摘要:
Methods for programming a memory device and memory devices are provided. According to at least one such method, a selected memory cell is programmed by a series of programming pulses. The series of programming pulses are configured in sets of programming pulses where each set has the same quantity of pulses and each programming pulse in the set has substantially the same amplitude (i.e., programming voltage). The amplitude of the programming pulses of subsequent sets is increased by a step voltage from the previous amplitude.
摘要:
Methods for programming a memory device, memory devices, and a memory systems are provided. According to at least one such method, a selected memory cell is programmed by a series of programming pulses. The series of programming pulses are configured in sets of programming pulses where each set has the same quantity of pulses and each programming pulse in the set has substantially the same amplitude (i.e., programming voltage). The amplitude of the programming pulses of subsequent sets is increased by a step voltage from the previous amplitude.
摘要:
Methods for programming a memory device and memory devices are provided. According to at least one such method, a selected memory cell is programmed by a series of programming pulses. The series of programming pulses are configured in sets of programming pulses where each set has the same quantity of pulses and each programming pulse in the set has substantially the same amplitude (i.e., programming voltage). The amplitude of the programming pulses of subsequent sets is increased by a step voltage from the previous amplitude.
摘要:
Methods for programming a memory device, memory devices, and a memory systems are provided. According to at least one such method, a selected memory cell is programmed by a series of programming pulses. The series of programming pulses are configured in sets of programming pulses where each set has the same quantity of pulses and each programming pulse in the set has substantially the same amplitude (i.e., programming voltage). The amplitude of the programming pulses of subsequent sets is increased by a step voltage from the previous amplitude.
摘要:
Methods and apparatus for pattern matching are disclosed. In at least one embodiment, pattern checking is accomplished by reading a page of memory, and comparing the read page with the pattern to be searched in a logic operation. In at least one other embodiment, a pattern to be searched is stored in registers where each bit of the pattern is stored using two register entries and each bit of the array data is stored using two cells of the array.
摘要:
Column select circuits having improved immunity to supply potential noise during sensing of the programmed state of a target memory cell are suited for use in low-voltage memory devices. Such column select circuits contain driver circuits having a filtered path and an unfiltered path for applying a supply potential to a gate of a pass transistor. The unfiltered path is utilized during a first sensing phase, such as during decoding or precharging of the bit lines, when transition speed of the pass transistors is desired. The filtered path is utilized at least during a second sensing phase while the sensing device is detecting the programmed state of the target memory cell. By reducing the noise of the supply potential using the filtered path, margins are improved on the sensing device and the sensing device is thus capable of operating at lower supply potentials.
摘要:
A low voltage flash EEPROM X-Cell includes an array of memory cell transistors (24) that constitute asymmetric floating gate memory cells wherein programming is achieved on only one side of the memory cells (24). The programming side of each of the memory cells (24) is connected to one of a plurality of Column Lines (28) at nodes (30). Each node (30) shares the programming side of two of the memory cells (24) and the non-programming side of two of the memory cells (24). The control gates of each of the memory cells (24) are connected to Word Lines (26) associated with rows of the array. To Flash Write all of the memory cells (24), the Column Lines (38) are connected to a negative medium voltage and the row lines (26) are connected to a positive medium voltage. To selectively erase one of the memory cells (24), the Column Line (28) associated with the programming side of the select memory cell transistor is connected to a positive medium voltage and the associated line (26) is connected to a positive Read voltage. The remaining Word Lines are connected to a negative Read voltage and the remaining Column Lines (28) are connected to a zero volt level.
摘要:
FLASH Memory hardware Block or sector Clear Operation using a single block or sector operation without using "byte-mode" processing is described. This hardware Block or sector Clear operation does not use avalanche injection, and has several distinct advantages, including programming simplicity, increased device reliability and yield. Use of the hardware block or sector clear operation described here results in increased programming speed, faster chip testing, and faster write/erase cycling compared to the normal operations of prior art.
摘要:
Segmentation of FLASH Memory arrays allows the global and local bit lines to be isolated, greatly reducing global bit line capacitance, reducing bit line stress, and eliminating boot block disturb effects. Reduction in bit line capacitance also results in fast access time greatly improving the ability to implement larger arrays without paying severe access time penalties.
摘要:
FLASH Memory sense amplifier reference circuit with weighted dummy loads is used to balance and bias the sense amplifier during erasing, programming, and verification such that the resulting robust stored logic states can meet more stringent pass-fail verify “1” or verify “0” tests. Programming in this manner guarantees logic states which meet full operating temperature and full power supply tolerances requirements.