摘要:
Polishing pads used in the manufacturing of microelectronic devices, and apparatuses and methods for making and using such polishing pads. In one aspect of the invention, a polishing pad for planarizing microelectronic-device substrate assemblies has a backing member including a first surface and a second surface, a plurality of pattern elements distributed over the first surface of the backing member, and a hard cover layer over the pattern elements. The pattern elements define a plurality of contour surfaces projecting away from the first surface of the backing member. The cover layer at least substantially conforms to the contour surfaces of the pattern elements to form a plurality of hard nodules projecting away from the first surface of the backing member. The hard nodules define abrasive elements to contact and abrade material from a microelectronic-device substrate assembly. As such, the cover layer defines at least a portion of a planarizing surface of the polishing pad.
摘要:
An ultra thin dielectric film or dielectric layer on a semiconductor device is disclosed. In one embodiment, an oxide layer is formed over a substrate. A silicon-containing material is deposited over the oxide layer. The deposited material and oxide layer are processed in a plasma to form the dielectric layer or ultra thin dielectric film. The silicon-containing dielectric layer can allow for improved or smaller semiconductor devices. The silicon containing dielectric layer can be fabricated at low temperatures. Improved or smaller semiconductor devices may be accomplished by reducing leakage, increasing the dielectric constant or fabricating at lower temperatures.
摘要:
A method of forming an ultra thin dielectric film or dielectric layer on a semiconductor device is disclosed. In one embodiment of the present invention, an oxide layer is formed over a substrate. A silicon-containing material is deposited over the oxide layer. The deposited material and oxide layer are processed in a plasma to form the dielectric layer or ultra thin dielectric film. The silicon-containing dielectric layer can allow for improved or smaller semiconductor devices. The silicon containing dielectric layer can be fabricated at low temperatures. Improved or smaller semiconductor devices may be accomplished by reducing leakage, increasing the dielectric constant or fabricating at lower temperatures.
摘要:
The present technique relates to a device including an optical integrated circuit amplifier and another type of optical integrated circuit. The optical integrated circuit amplifiers and other optical integrated circuits are coupled together through optical paths. The optical integrated circuit amplifiers and other optical integrated circuits of the optical components are fabricated on the same substrate. The optical integrated circuit amplifiers and other optical integrated circuit amplifiers maybe fabricated on different levels of the same substrate.
摘要:
In one aspect, the invention includes a method of forming a material comprising tungsten and nitrogen, comprising: a) providing a substrate; b) depositing a layer comprising tungsten and nitrogen over the substrate; and c) in a separate step from the depositing, exposing the layer comprising tungsten and nitrogen to a nitrogen-containing plasma. In another aspect, the invention includes a method of forming a capacitor, comprising: a) forming a first electrical node; b) forming a dielectric layer over the first electrical node; c) forming a second electrical node; and d) providing a layer comprising tungsten and nitrogen between the dielectric layer and one of the electrical nodes, the providing comprising; i) depositing a layer comprising tungsten and nitrogen; and ii) in a separate step from the depositing, exposing the layer comprising tungsten and nitrogen to a nitrogen-containing plasma.
摘要:
Planarizing machines, planarizing pads, and methods for planarizing or endpointing mechanical and/or chemical-mechanical planarization of microelectronic substrates. One particular embodiment is a planarizing machine that controls the movement of a planarizing pad along a pad travel path to provide optical analysis of a substrate assembly during a planarizing cycle. The planarizing machine can include a table having an optical opening at an illumination site in a planarizing zone and a light source aligned with the illumination site to direct a light beam through the optical opening in the table. The planarizing machine can further include a planarizing pad and a pad advancing mechanism. The planarizing pad has a planarizing medium and at least one optically transmissive window along the pad travel path. The pad advancing mechanism has an actuator system coupled to the pad and a position monitor coupled to the actuator system. The actuator system is configured to move the planarizing pad over the table along the pad travel path, and the position monitor is configured to sense the position of a window in the planarizing pad relative to the opening in the table at the illumination site.
摘要:
An intermediate metal plug is used to raise the platform to which contact is to be made. In the illustrated process, a partial bit line plug is formed adjacent a stacked capacitor, and an interlevel dielectric formed over the capacitor. The bit line contact is completed by extending a via from the bit line, formed above the interlevel dielectric, down to the level of the intermediate plug, and the via is filled with metal. The height of the via to be filled is thus reduced by the height of the intermediate plug. In one embodiment, the intermediate plug is slightly shorter than an adjacent container-shaped capacitor. In another embodiment, the intermediate plug is about as high as an adjacent stud capacitor.
摘要:
A capacitor fabrication method may include atomic layer depositing a conductive barrier layer to oxygen diffusion over the first electrode. A method may instead include chemisorbing a layer of a first precursor at least one monolayer thick over the first electrode and chemisorbing a layer of a second precursor at least one monolayer thick on the first precursor layer, a chemisorption product of the first and second precursor layers being comprised by a layer of a conductive barrier material. The barrier layer may be sufficiently thick and dense to reduce oxidation of the first electrode by oxygen diffusion from over the barrier layer. An alternative method may include forming a first capacitor electrode over a substrate, the first electrode having an inner surface area per unit area and an outer surface area per unit area that are both greater than an outer surface area per unit area of the substrate. A capacitor dielectric layer and a second capacitor electrode may be formed over the dielectric layer. The method may further include forming rugged polysilicon over the substrate, the first electrode being over the rugged polysilicon. Accordingly, the outer surface area of the first electrode can be at least 30% greater than the outer surface area of the substrate without the first electrode including polysilicon.
摘要:
The present technique relates to a method for fabricating an optical integrated circuit amplifier with another type of optical integrated circuit. In optical networks, optical components exchange optical signals to communicate between different systems coupled to the optical components. The optical components may include optical integrated circuit amplifiers and other optical integrated circuits coupled together through optical paths. The optical integrated circuit amplifiers and other optical integrated circuits of the optical components are fabricated on the same substrate to reduce the cost of fabrication, maintenance and installation, while enhancing the performance of the optical component.
摘要:
The invention comprises integrated circuitry and to methods of forming capacitors. In one implementation, integrated circuitry includes a capacitor having a first capacitor electrode, a second capacitor electrode and a high K capacitor dielectric region received therebetween. The high K capacitor dielectric region has a high K substantially amorphous material layer and a high K substantially crystalline material layer. In one implementation, a capacitor forming method includes forming a first capacitor electrode layer over a substrate. A substantially amorphous first high K capacitor dielectric material layer is deposited over the first capacitor electrode layer. The substantially amorphous high K first capacitor dielectric material layer is converted to be substantially crystalline. After the converting, a substantially amorphous second high K capacitor dielectric material layer is deposited over the substantially crystalline first high K capacitor dielectric material layer. A second capacitor electrode layer is formed over the substantially amorphous second high K capacitor dielectric material layer.