Abstract:
A substrate holder for holding a substrate (e.g., a wafer or an LCD panel) during plasma processing. The substrate holder is a stack of processing elements which each perform at least one function. The elements include an electrostatic chuck (102), an He gas distribution system (122), multi-zone heating plates (132), and multi-zone cooling system (152). Each element is designed to match the characteristic of the processing system, e.g., by applying heat based on a heat loss characteristic of the substrate during normal processing. The integrated design allows for precise control of the operating conditions, including, but not limited to, fast heating and fast cooling of a substrate.
Abstract:
A plasma reactor or vacuum processing apparatus is provided with an orifice plate assembly. The orifice plate assembly includes an upper plate and a lower plate. Each plate is configured with through holes. The upper and lower orifice plates are independently rotatable with respect to each other. The plates are arranged within the vacuum chamber a discharge reactor such that the chuck assembly is disposed within an opening in the orifice plate assembly. The orifice plate assembly is further configured to have a perimeter shape that substantially matches the interior wall shape of vacuum chamber.
Abstract:
A method and an apparatus utilized for thermal processing of substrates during semiconductor manufacturing. The method includes heating the substrate to a predetermined temperature using a heating assembly, cooling the substrate to the predetermined temperature using a cooling assembly located such that a thermal conductance region is provided between the heating and cooling assemblies, and adjusting a thermal conductance of the thermal conductance region to aid in heating and cooling of the substrate. The apparatus includes a heating assembly, a cooling assembly located such that a thermal conductance region is provided between the heating and cooling assemblies, and a structure or configuration for adjusting a thermal conductance of the thermal conductance region.
Abstract:
In a method for performing a plasma-assisted treatment on a substrate in a reactor chamber by: introducing at least one process gas into the reactor chamber; and creating a plasma within the reactor chamber by establishing an RF electromagnetic field within the chamber and allowing the field to interact with the process gas, the electromagnetic field is controlled to have an energy level which varies cyclically between at least two values each sufficient to maintain the plasma, such that each energy level value is associated with performance of a respectively different treatment process on the substrate.
Abstract:
A method of and a structure for controlling the temperature of an electrode (4). The electrode is heated prior to etching the first wafer and both a (temporally) stationary and a (spatially) homogeneous temperature of the silicon electrode are maintained. Resistive heater elements (1) are either embedded within the housing of the electrode (3) or formed as part of the electrode. The resistive heater elements form a heater of a multi-zone type in order to minimize the temperature non-uniformity. The resistive heater elements are divided into a plurality of zones, wherein the power to each zone can be adjusted individually, allowing the desirable temperature uniformity of the electrode to be achieved. Preheating the electrode to the appropriate operating temperature eliminates both the “first wafer effect” and non-uniform etching of a semiconductor wafer.
Abstract:
Apparatus including a chamber and a coil system for converting a field-generating current into a RF magnetic field in the chamber when the chamber contains an ionized gas which interacts with the RF magnetic field to create a plasma. The plasma is contained within a cylindrical region enclosed by the chamber, which region has a longitudinal center axis, and the region is considered to be made up of a plurality of annular zones concentric with the center axis and disposed at respectively different distances from the center axis. The coil system is composed of: a plurality of individual coils each positioned and dimensioned to produce a RF magnetic field which predominantly influences a respective annular zone.
Abstract:
A method and an apparatus utilized for thermal processing of substrates during semiconductor manufacturing. The method includes heating the substrate to a predetermined temperature using a heating assembly, cooling the substrate to the predetermined temperature using a cooling assembly located such that a thermal conductance region is provided between the heating and cooling assemblies, and adjusting a thermal conductance of the thermal conductance region to aid in heating and cooling of the substrate. The apparatus includes a heating assembly, a cooling assembly located such that a thermal conductance region is provided between the heating and cooling assemblies, and a structure or configuration for adjusting a thermal conductance of the thermal conductance region.
Abstract:
A method of adjusting the relative thickness of an electrode assembly (10) in a plasma processing system (6) capable of supporting a plasma (20, 120) in a reactor chamber (16). The electrode assembly is arranged in the reactor chamber and includes at least one electrode having a lower surface that may have defined by at least one sacrificial protective plate (100). The electrode has a nonuniform thickness resulting from a plasma processing operation performed in the reactor chamber. The method includes a step of forming a plasma (120) designed to selectively etch the at least one electrode at the lower surface, followed by a step of etching the electrode with the aid of the plasma to reduce the nonuniformity in thickness (T(X,Z)) of the at least one electrode. The thickness of the electrode may be measured in situ using an acoustic transducer (210) during the processing of workpieces as well as during the restorative plasma etching of the electrode.
Abstract:
A plasma processing system that includes a plasma chamber, an open resonator movably mounted within the plasma chamber, and a detector. The open resonator produces a microwave signal, and the detector detects the microwave signal and measures a mean electron plasma density along a path of the signal within a plasma field. Alternatively, the plasma processing system includes a plasma chamber, a plurality of open resonators provided within the plasma chamber, a plurality of detectors, and a processor. The processor is configured to receive a plurality of mean electron plasma density measurements from the detectors that correspond to locations of the plurality of open resonators.
Abstract:
A dry non-plasma treatment system and method for removing oxide material is described. The treatment system is configured to provide chemical treatment of one or more substrates, wherein each substrate is exposed to a gaseous chemistry, including HF and optionally NH3, under controlled conditions including surface temperature and gas pressure. Furthermore, the treatment system is configured to provide thermal treatment of each substrate, wherein each substrate is thermally treated to remove the chemically treated surfaces on each substrate.