Abstract:
A resistance random access memory including a first electrode layer, a second electrode layer, and a stacked structure is provided. The stacked structure includes a HfZrON layer and a ZrON layer and is located between the first electrode layer and the second electrode layer. In addition, the disclosure further provides a method of fabricating a resistance random access memory.
Abstract:
A resistive memory device and a fabricating method thereof are introduced herein. In resistive memory device, a plurality of bottom electrodes is disposed in active region of a substrate. Each of the bottom electrodes is disposed to correspond to each of the conductive channels; a patterned resistance switching material layer and the patterned top electrode layer are sequentially stacked on the bottom electrodes. An air dielectric layer exists between the patterned resistance switching material layer and the bottom electrodes. A plurality of patterned interconnections is disposed on the patterned top electrode.
Abstract:
A semiconductor device is provided. The semiconductor device comprises a substrate. A lamination structure is on the substrate along a first direction. The lamination structure comprises a plurality of conductive layers arranged from bottom to top and separated from each other, and each of the conductive layers has a channel region and an adjacent source/drain doped region along the first direction. A first gate structure is on a sidewall of the channel region of each conductive layer. The first gate structure comprises an inner first gate insulating layer and an outer first gate conductive layer.
Abstract:
A phase change memory (PCM) cell fabricated by etching a tapered structure into a phase change layer, and planarizing a dielectric layer on the phase change layer until a tip of the tapered structure is exposed for contacting a heating electrode. Therefore, the area of the exposed tip of the phase change layer is controlled to be of an extremely small size, the contact area between the phase change layer and the heating electrode is reduced, thereby lowering the operation current.
Abstract:
In a method of fabricating a phase change memory (PCM) device, a substrate having bottom electrodes formed therein is provided. A first dielectric layer having cup-shaped thermal electrodes is formed over the substrate. Second dielectric layers are formed on the substrate. Stacked structures are formed on the substrate. A PC material film is formed over the substrate and covers the stacked structures and the second dielectric layers. The PC material film is anisotropically etched to form PC material spacers on sidewalls of the stacked structures, and each of the PC material spacers physically and electrically contacts each of the cup-shaped thermal electrodes and top electrodes. The PC material spacers include phase change material. The PC material spacers are over-etched to remove the PC material film on the sidewalls of the second dielectric layers.
Abstract:
A semiconductor device is provided. The semiconductor device comprises a substrate. A lamination structure is on the substrate along a first direction. The lamination structure comprises a plurality of conductive layers arranged from bottom to top and separated from each other, and each of the conductive layers has a channel region and an adjacent source/drain doped region along the first direction. A first gate structure is on a sidewall of the channel region of each conductive layer. The first gate structure comprises an inner first gate insulating layer and an outer first gate conductive layer.
Abstract:
A phase-change memory layer and method for manufacturing the same and a phase-change memory cell are provided. The phase-change memory layer is crystallized by adding one or more heterogeneous crystals that do not react with phase-change materials as the crystal nucleus, so as to reduce the time for transforming to the crystalline state from the amorphous state.
Abstract:
An air gap fabricating method is provided. A patterned sacrificial layer is formed over a substrate, and the material of the patterned sacrificial layer includes a germanium-antimony-tellurium alloy. A dielectric layer is formed on the patterned sacrificial layer. A reactant is provided to react with the patterned sacrificial layer and the patterned sacrificial layer is removed to form a structure with an air gap disposed at the original position of the patterned sacrificial layer.
Abstract:
A phase change memory device is provided. The phase change memory device comprises a substrate. An electrode layer is on the substrate. A phase change memory structure is on the electrode layer and electrically connected to the electrode layer, wherein the phase change memory structure comprises a cup-shaped heating electrode on the electrode layer. An insulating layer is on the cup-shaped heating electrode along a first direction covering a portion of the cup-shaped heating electrode. An electrode structure is on the cup-shaped heating electrode along a second direction covering a portion of the insulating layer and the cup-shaped heating electrode. A pair of double spacers is on a pair of sidewalls of the electrode structure covering a portion of the cup-shaped heating electrode, wherein the double spacer comprises a phase change material spacer and an insulating material spacer on a sidewall of the phase change material spacer.
Abstract:
A phase change memory device and fabricating method are provided. A disk-shaped phase change layer is buried within the insulating material. A center via and ring via are formed by a lithography. The center via is located in the center of the phase change layer and passes through the phase change layer, and the ring via takes the center via as a center. A heating electrode within the center via performs Joule heating of the phase change layer, and the contact area between the phase change layer and the heating electrode is reduced by controlling the thickness of the phase change layer. Furthermore, a second electrode within the ring via dissipates the heat transmitted to the contact interface between the phase change layers, so as to avoid transmitting the heat to the etching boundary at the periphery of the phase change layer.