摘要:
A versatile system providing Cr-based diffusion barriers and electrode structures utilizing such barriers is disclosed, including a semiconductor substrate (102), a dielectric layer (106) disposed upon the substrate, a Cr-based conductive layer (114) disposed upon the dielectric layer, and an electrode layer (116) disposed upon the conductive layer.
摘要:
Non-volatile resistance change memories, systems, arrangements and associated methods are implemented in a variety of embodiments. According to one embodiment, a memory cell having two sections with outwardly-facing portions, the outwardly-facing portions electrically coupled to electrodes is implemented. The memory cell has an ionic barrier between the two sections. The two sections and the ionic barrier facilitate movement of ions from one of the two sections to the other of the two sections in response to a first voltage differential across the outwardly-facing portions. The two sections and the ionic barrier diminish movement of ions from the one of the two sections to the other of the two sections in response to another voltage differential across the outwardly-facing portions.
摘要:
Excellent capacitor-voltage characteristics with near-ideal hysteresis are realized in a capacitive-like structure that uses an electrode substrate-type material with a high-k dielectric layer having a thickness of a few-to-several Angstroms capacitance-based SiO2 equivalent (“TOx,Eq”). According to one particular example embodiment, a semiconductor device structure has an electrode substrate-type material having a Germanium-rich surface material. The electrode substrate-type material is processed to provide this particular electrode surface material in a form that is thermodynamically stable with a high-k dielectric material. A dielectric layer is then formed over the electrode surface material with the high-k dielectric material at a surface that faces, lies against and is thermodynamically stable with the electrode surface material.
摘要:
Excellent capacitor-voltage characteristics with near-ideal hysteresis are realized in a capacitive-like structure that uses an electrode substrate-type material with a high-k dielectric layer having a thickness of a few-to-several Angstroms capacitance-based SiO2 equivalent (“TOx, Eq”). According to one particular example embodiment, a semiconductor device structure has an electrode substrate-type material having a Germanium-rich surface material. The electrode substrate-type material is processed to provide this particular electrode surface material in a form that is thermodynamically stable with a high-k dielectric material. A dielectric layer is then formed over the electrode surface material with the high-k dielectric material at a surface that faces, lies against and is thermodynamically stable with the electrode surface material.
摘要:
A method and system for forming a nitrided germanium-containing layer by plasma processing. The method includes providing a germanium-containing substrate in a process chamber, generating a plasma from a process gas containing N2 and a noble gas, where the plasma conditions are selected effective to form plasma excited N2 species while controlling formation of plasma excited N species, and exposing the substrate to the plasma to form a nitrided germanium-containing layer on the substrate. A method is also provided that includes exposing a germanium-containing dielectric layer to liquid or gaseous H2O to alter the thickness and chemical composition of the layer.
摘要翻译:通过等离子体处理形成氮化锗含量层的方法和系统。 该方法包括在处理室中提供含锗衬底,从含有N 2 O 3和惰性气体的工艺气体产生等离子体,其中选择有效的等离子体条件以形成等离子体激发的N 2种物质,同时控制等离子体激发的N物质的形成,以及将衬底暴露于等离子体以在衬底上形成氮化的含锗层。 还提供了一种方法,其包括将含锗介电层暴露于液态或气态H 2 O以改变该层的厚度和化学组成。
摘要:
An adherent hardmask structure and method of etching a bottom electrode in memory device capacitor structures that dispenses with the need for any adhesion promoter during the etching of the bottom electrode. By using silicon nitride as a hardmask 220, the processing is simplified and a more robust capacitor structure can be produced. Silicon nitride 220 has been shown to yield significantly enhanced adhesion to platinum 210, as compared to silicon oxide formed by any method. Since silicon nitride 220 is oxidation resistant, it advantageously resists any oxygen plasma that might be used in the etch chemistry. This etching process can be used during processing of high-k capacitor structures in DRAMs in the ≧256 Mbit generations.
摘要:
A high-k dielectric capacitor structure and fabrication method that incorporates an adhesion promoting etch stop layer 200 to promote adhesion of the bottom electrode 220 to the interlevel dielectric layer 210 and to provide a well controlled, repeatable and uniform recess prior to the dielectric 230 deposition. By using a sacrificial layer 200, for example silicon nitride (Si3N4), this layer can act as an etch stop during the recess etch to eliminate parasitic capacitance between adjacent capacitor cells A and B and can promote adhesion of the bottom electrode material 220 to the substrate 210.
摘要翻译:高k电介质电容器结构和制造方法,其包含粘附促进蚀刻停止层200以促进底部电极220粘附到层间电介质层210,并且在电介质230沉积之前提供良好控制的,可重复的和均匀的凹部 。 通过使用牺牲层200(例如氮化硅(Si 3 N 4)),该层可以在凹陷蚀刻期间用作蚀刻停止以消除相邻的电容器电池A和B之间的寄生电容,并且可以促进底部电极材料220与 衬底210。
摘要:
In various exemplary embodiments, the present invention provides a lightweight, maneuverable, thin-walled, transparent apparatus for use with a heavy-duty vacuum system for quickly and easily collecting and storing large volumes of bulky debris, thereby reducing the time needed for cleanup. The present invention also provides an improved vacuum manifold assembly that may be used in conjunction with various gas and electric blower/vacuum motors, both novel and conventional. The present invention further provides various gutter cleaning and other tools that may be used in conjunction with such a vacuum system. The gutter cleaning vacuum system including the improved hinged vacuum manifold assembly of the present invention has sufficient power and is designed such that the various gutter cleaning and other tools are effective, suction-wise, at great distances from the unit, such that an operator may use the gutter cleaning and other tools at great distances over his/her head, for example.
摘要:
A method and system for forming a nitrided germanium-containing layer by plasma processing. The method includes providing a germanium-containing substrate in a process chamber, generating a plasma from a process gas containing N2 and a noble gas, where the plasma conditions are selected effective to form plasma excited N2 species while controlling formation of plasma excited N species, and exposing the substrate to the plasma to form a nitrided germanium-containing layer on the substrate. A method is also provided that includes exposing a germanium-containing dielectric layer to liquid or gaseous H2O to alter the thickness and chemical composition of the layer.
摘要:
An embodiment of the instant invention is a method of forming a electrically conductive structure insulatively disposed from a second structure, the method comprising: providing the second structure; forming the electrically conductive structure of a material (step 118 of FIG. 1) that remains substantially conductive after it is oxidized; forming an electrically insulative layer (step 116 of FIG. 1) between the second structure and the conductive structure; and oxidizing the conductive structure by subjecting it to an ozone containing atmosphere for a duration of time and at a first temperature.