摘要:
A versatile system providing Cr-based diffusion barriers and electrode structures utilizing such barriers is disclosed, including a semiconductor substrate (102), a dielectric layer (106) disposed upon the substrate, a Cr-based conductive layer (114) disposed upon the dielectric layer, and an electrode layer (116) disposed upon the conductive layer.
摘要:
An FRAM device can comprise a sense amplifier, at least a first bitcell, a first control line, and a second control line. The first bitcell can have a bit line that connects to the sense amplifier via a first isolator and a complimentary bit line that connects to the sense amplifier via a second isolator that is different from the first isolator. The first control line can connect to and control the aforementioned first isolator. And the second control line can connect to and control the second isolator such that the second isolator is independently controlled with respect to the first isolator to facilitate testing the device.
摘要:
The present invention provides a method for etching a substrate, a method for forming an integrated circuit, an integrated circuit formed using the method, and an integrated circuit. The method for etching a substrate includes, among other steps, providing a substrate 140 having an aluminum oxide etch stop layer 130 located thereunder, and then etching an opening 150, 155, in the substrate 140 using an etchant comprising carbon oxide, a fluorocarbon, an etch rate modulator, and an inert carrier gas, wherein a flow rate of the carbon oxide is greater than about 80 sccm and the etchant is selective to the aluminum oxide etch stop layer 130. The aluminum oxide etch stop layer may also be used in the back-end of advanced CMOS processes as a via etch stop layer.
摘要:
A ferroelectric memory device is disclosed and comprises a logic programmable capacitance reference circuit. The circuit is adapted to generate a reference voltage during a sense mode of operation, wherein the reference voltage comprises a value that is a function of one or more memory conditions. The memory device further comprises a bit line pair, wherein a first bit line of the bit line pair has a ferroelectric capacitor coupled thereto for sensing thereof, and a second bit line of the bit line pair is coupled to the reference voltage. A sense circuit is coupled to the bit line pair and is configured to detect a data state associated with the ferroelectric capacitor using a voltage associated with the first bit line and the reference voltage on the second bit line.
摘要:
A capacitor (100) with a high dielectric constant oxide dielectric (102) plus Ir- or Ir and Rh bond over the oxygen site in Barium strontium titanate (BST) dielectric to achieve the high Schottky barrier, and very thin layers of Ir or Rh with conductive oxide backing layers (106, 116) provide oxygen depletion deterrence. Rh-containing capacitor plates (104, 114) yielding high Schottky barrier interfaces.
摘要:
An FRAM device can comprise a sense amplifier and at least a first bitcell. The first bitcell can have a bit line and a complimentary bit line that connects to the sense amplifier. A first precharge circuit responds to a first control signal during a test mode of operation to precharge the bit line with respect to a first voltage while a second precharge circuit responds to a second control signal (that is different from the first control signal) during the test mode of operation to precharge the complimentary bit line with respect to a test voltage that is different than the first voltage (such as, but not limited to, a test voltage of choice such as a voltage that is greater than ground but less than the first voltage).
摘要:
Hydrogen barriers and fabrication methods are provided for protecting ferroelectric capacitors (CFE) from hydrogen diffusion in semiconductor devices (102), wherein nitrided aluminum oxide (N—AlOx) is formed over a ferroelectric capacitor (CFE), and one or more silicon nitride layers (112, 117) are formed over the nitrided aluminum oxide (N—AlOx). Hydrogen barriers are also provided in which an aluminum oxide (AlOx, N—AlOx) is formed over the ferroelectric capacitors (CFE), with two or more silicon nitride layers (112, 117) formed over the aluminum oxide (AlOx, N—AlOx), wherein the second silicon nitride layer (112) comprises a low silicon-hydrogen SiN material.
摘要:
The present invention is directed to a method of forming an FeRAM integrated circuit, which includes performing a capacitor stack etch to define the FeRAM capacitor. The method comprises etching a PZT ferroelectric layer with a high temperature BCl3 etch which provides substantial selectivity with respect to the hard mask. Alternatively, the PZT ferroelectric layer is etch using a low temperature fluorine component etch chemistry such as CHF3 to provide a non-vertical PZT sidewall profile. Such a profile prevents conductive material associated with a subsequent bottom electrode layer etch from depositing on the PZT sidewall, thereby preventing leakage or a “shorting out” of the resulting FeRAM capacitor.
摘要:
An embodiment of the invention is a method of cleaning a material stack 2 that has a hard mask top layer 8. The method involves cleaning the material stack 2 with a fluorine-based plasma etch. The method further involves rinsing the material stack 2 with a wet clean process.
摘要:
Ferroelectric memory cells and fabrication methods are provided in which the memory cell comprises a ferroelectric capacitor in a capacitor layer above a semiconductor body, and a cell transistor with first and second source/drains formed in an active region of the semiconductor body. The active region extends along a first axis in the semiconductor body, and the cell includes a gate electrically coupled with a wordline structure that extends along a second axis, wherein the first axis and the second axis are oblique.