摘要:
A ferroelectric memory device is disclosed and comprises a logic programmable capacitance reference circuit. The circuit is adapted to generate a reference voltage during a sense mode of operation, wherein the reference voltage comprises a value that is a function of one or more memory conditions. The memory device further comprises a bit line pair, wherein a first bit line of the bit line pair has a ferroelectric capacitor coupled thereto for sensing thereof, and a second bit line of the bit line pair is coupled to the reference voltage. A sense circuit is coupled to the bit line pair and is configured to detect a data state associated with the ferroelectric capacitor using a voltage associated with the first bit line and the reference voltage on the second bit line.
摘要:
Hydrogen barriers and fabrication methods are provided for protecting ferroelectric capacitors (CFE) from hydrogen diffusion in semiconductor devices (102), wherein nitrided aluminum oxide (N—AlOx) is formed over a ferroelectric capacitor (CFE), and one or more silicon nitride layers (112, 117) are formed over the nitrided aluminum oxide (N—AlOx). Hydrogen barriers are also provided in which an aluminum oxide (AlOx, N—AlOx) is formed over the ferroelectric capacitors (CFE), with two or more silicon nitride layers (112, 117) formed over the aluminum oxide (AlOx, N—AlOx), wherein the second silicon nitride layer (112) comprises a low silicon-hydrogen SiN material.
摘要:
A method for controlling the crystallographic texture of thin films with anisotropic ferroelectric polarization or permittivity by means of ion bombardment resulting in a texture with higher ferroelectric polarization or permittivity which is normally energetically disfavored.
摘要:
Apparatus for optical communications (10, 110, 210) includes a low-temperature grown photoconductor (12, 140, 220) coupled to at least one resonant tunneling device (14, 120, 130, 230, 240). When exposed to an input light, low-temperature grown photoconductor (10, 110, 210) absorbs photons, which decreases the resistivity, and thus the resistance of the photoconductor. This decrease in resistance causes a decrease in the voltage drop across photoconductor (12, 140, 220), which causes a corresponding increase in the voltage drop across resonant tunneling device (14, 120, 130, 230, 140).
摘要:
A hot-electron transistor (10) is formed on substrate (12) having an outer surface. The present transistor includes subcollector layer (14) comprising Indium Gallium Arsenide formed outwardly from the outer surface of substrate (12). Collector barrier layer (18) comprising Indium Aluminum Gallium Arsenide is outwardly formed from subcollector layer (14), and collector barrier layer (18) minimizes leakage current in transistor (10). Outwardly from collector barrier layer (18) is formed base layer (20) comprising Indium Gallium Arsenide. Tunnel injector layer (21) comprising Aluminum Arsenide for ballistically transporting electrons in transistor (10) is outwardly formed from base layer (20), and emitter layer (24) comprising Indium Aluminum Arsenide is outwardly formed from tunnel injector layer (21).
摘要:
A method of manufacturing a semiconductor device. The method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive residue is generated on sidewalls of the ferroelectric capacitor as a by-product of the patterning. The method also comprises removing the conductive residue using a physical plasma etch clean-up process that includes maintaining a substrate temperature that is greater than about 60° C.
摘要:
Hydrogen barriers and fabrication methods are provided for protecting ferroelectric capacitors (CFE) from hydrogen diffusion in semiconductor devices (102), wherein nitrided aluminum oxide (N—AlOx) is formed over a ferroelectric capacitor (CFE), and one or more silicon nitride layers (112, 117) are formed over the nitrided aluminum oxide (N—AlOx). Hydrogen barriers are also provided in which an aluminum oxide (AlOx, N—AlOx) is formed over the ferroelectric capacitors (CFE), with two or more silicon nitride layers (112, 117) formed over the aluminum oxide (AlOx, N—AlOx), wherein the second silicon nitride layer (112) comprises a low silicon-hydrogen SiN material.
摘要翻译:提供了氢屏障和制造方法,用于保护铁电电容器(CFE)在半导体器件(102)中的氢扩散,其中氮化的氧化铝(N-AlO x X)为 形成在铁电电容器(CFE)上,并且在氮化的氧化铝(N-AlO x N)上形成一个或多个氮化硅层(112,117)。 还提供了氢屏障,其中在铁电电容器(C FE)上形成氧化铝(AlO x N,N-AlO x x) ,其上形成有氧化铝(AlO x N,N-AlO x)上的两个或更多个氮化硅层(112,117),其中第二氮化硅层(112 )包括低硅氢SiN材料。
摘要:
Molecular beam epitaxy (202) with growing layer thickness control (206) by feedback of mass spectrometer (204) signals based on a process model. Examples include III-V compound structures with multiple AlAs, InGaAs, and InAs layers as used in resonant tunneling diodes.
摘要:
A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
摘要:
The present invention is a method related to the deposition of a metallization layer in a trench in a semiconductor substrate. The focus of the invention is to sequentially perform heated deposition and etch unit processes to provide a good conformal film of metal on the inner surfaces of a via or trench. The deposition and etch steps can also be performed simultaneously.