摘要:
The invention relates to a catalytic cracking process for reducing sulfur content in gasoline and the device thereof, which includes a fluidized bed reactor in addition of a heavy oil catalytic cracking riser, characterized in enhancing contact time of oil-gas with the catalyst, further desulfurizing and reducing olefin content and increasing octane number in gasoline; regenerating all recycling catalysts, quality of products being stable and easily operated, reducing sulfur of gasoline to a maximum limit; adding a cooling device so as to avoid coking when the catalyst contacts with oil-gas in high temperature and decrease of yield of light oil resulted by excessively high reaction temperature of gasoline upgrading, improving products distribution, being flexible to change catalyst-oil ratio and reaction temperature of catalytic cracking reaction. The invention also provides an easily operated process for FCC desulfurization with stronger desulfurizing ability, good selectivity of products and high light oil yield, which can realize 40-80% of FCC gasoline desulfurization. Furthermore, more than 80% of FCC gasoline desulfurization can be achieved if the process is applied in combination with some particular catalysts.
摘要:
A method for synthesizing high-content NaY molecular sieves with kaolin sprayed microspheres includes adding functional components and deionized water into kaolin so as to be pulped into a mixed slurry. The slurry is sprayed into microspheres. The microspheres are calcined at a temperature between 700 and 1,000° C. and mixed with a directing agent for crystallization. The resultant solid is filtrated and washed with water and then dried to obtain a final in-situ crystallized product with high content of molecular sieves.
摘要:
A method for synthesizing high-content NaY molecular sieves with kaolin sprayed microspheres is provided, comprising that functional components and deionized water are added into the kaolin so as to be pulped mixed slurry, and the slurry is sprayed into microspheres, the sprayed microspheres are calcined at a temperature between 700 and 1,000° C. and the obtained is mixed up with directing agent for crystallization, the resultant solid is filtrated from mother liquid and washed by water. The functional components include structural agents, and the addition of the agents is about 2˜10 percent by mass of the kaolin; the structural agents are one or more of starch, graphite powder, and carboxymenthyl cellulose. Alternatively according to the present invention, one part of the sprayed microspheres with particle sizes of 20˜110 μm is calcined at high temperature to get high-temperature calcined kaolin microspheres, while the other part is calcined at a low temperature to get meta kaolin microspheres. The two parts are mixed up for crystallization reaction in hydrothermal conditions to get a crystallized product containing 40 to 60 weight percent of NaY molecular sieves, and the ratio of silicon to aluminum therein is 3.5˜5.5.
摘要:
Provided is a phosphorus-containing ultrastable Y-type rare earth (RE) molecular sieve and the preparation method thereof. The method is: based on NaY molecular sieve as a raw material, obtaining “one-exchange one-roast” RE-Na Y-type molecular sieve through the steps of exchanging with RE, pre-exchanging with dispersing, and the first calcination; and then performing ammonium salt exchange, phosphorus modification, and the second calcination on the “one-exchange one-roast” RE-Na Y-type molecular sieve, wherein the sequence of the RE exchange and the pre-exchange with dispersing is unlimited, and the sequence of the ammonium salt exchange and the phosphorus modification is unlimited as well. The obtained molecular sieve contains RE oxide 1-20 wt %, phosphorus 0.1-5 wt %, and sodium oxide no more than 1.2 wt %, and has a crystallization degree of 51-69% and a lattice parameter of 2.449-2.469 nm. Heavy oil conversion rate can be increased by using the molecular sieve as an active component in a catalytic cracking catalyst.
摘要:
The present invention relates to a heavy oil catalytic cracking catalyst and preparation method thereof. The catalyst comprises 2 to 50% by weight of an ultra-stable rare earth type Y molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of rare earth oxide. The ultra-stable rare earth type Y molecular sieve is obtained as follows: the raw material, NaY molecular sieve, is subjected to a rare earth exchange and a dispersing pre-exchange, and the molecular sieve slurry is filtered, washed and subjected to a first calcination to produce a “one-exchange one-calcination” rare earth sodium Y molecular sieve, wherein the order of the rare earth exchange and the dispersing pre-exchange is not limited; and the “one-exchange one-calcination” rare earth sodium Y molecular sieve is further subjected to ammonium salt exchange for sodium reduction and a second calcination. The catalyst provided in the present invention is characteristic in its high heavy-oil-conversion capacity, a high total liquid yield and a high light oil yield.
摘要:
The present invention provides a catalytic cracking catalyst for heavy oil and preparation methods thereof. The catalyst comprises 2 to 50% by weight of a phosphorus-containing ultrastable rare earth Y-type molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of a rare earth oxide. The phosphorus-containing ultra-stable rare earth Y-type molecular sieve uses a NaY molecular sieve as a raw material. The raw material is subjected to a rare-earth exchange and a dispersing pre-exchange; the molecular sieve slurry is then filtered, washed with water and subjected to a first calcination to obtain a rare earth sodium Y molecular sieve which has been subjected to such “first-exchange first-calcination”, wherein the steps of rare earth exchange and dispersing pre-exchange are not restricted in sequence; and then the rare earth sodium Y molecular sieve which has been subjected to “one-exchange one-calcination” is subjected to “second exchange and second calcination” including ammonium exchange and a phosphorus modification, wherein the steps of the ammonium exchange and the phosphorus modification are not restricted in sequence. The steps of the ammonium exchange and the phosphorus modification can be conducted continuously or non-continuously, the second calcination is conducted after the ammonium exchange for reducing sodium, the phosphorus modification can be conducted before or after the second calcination. The catalyst provided by the invention has the characteristics of high heavy oil conversion capacity, high total liquid yield, and high yield of light oil.
摘要:
The present invention provides an ultra-stable rare earth type Y molecular sieve and the preparation method thereof, which method is carried out by subjecting a NaY molecular sieve as the raw material to a rare earth exchange and a dispersing pre-exchange, then to an ultra-stabilization calcination treatment. The molecular sieve comprises 1 to 20% by weight of rare earth oxide, not more than 1.2% by weight of sodium oxide, has a crystallinity of 51 to 69%, and a lattice parameter of 2.451 nm to 2.469 nm. In contrast to the prior art, in the molecular sieve prepared by this method, rare earth ions are located in sodalite cages, which is demonstrated by the fact that no rare earth ion is lost during the reverse exchange process. Moreover, the molecular sieve prepared by such a method has a molecular particle size D(v,0.5) of not more than 3.0 μm and a D(v,0.9) of not more than 20 μm. Cracking catalysts using the molecular sieve as an active component is characterized by a high heavy-oil-conversion capacity and a high yield of valuable target products.
摘要:
The present invention relates to a heavy oil catalytic cracking catalyst and preparation method thereof. The catalyst comprises 2 to 50% by weight of an ultra-stable rare earth type Y molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of rare earth oxide. The ultra-stable rare earth type Y molecular sieve is obtained as follows: the raw material, NaY molecular sieve, is subjected to a rare earth exchange and a dispersing pre-exchange, and the molecular sieve slurry is filtered, washed and subjected to a first calcination to produce a “one-exchange one-calcination” rare earth sodium Y molecular sieve, wherein the order of the rare earth exchange and the dispersing pre-exchange is not limited; and the “one-exchange one-calcination” rare earth sodium Y molecular sieve is further subjected to ammonium salt exchange for sodium reduction and a second calcination. The catalyst provided in the present invention is characteristic in its high heavy-oil-conversion capacity, a high total liquid yield and a high light oil yield.
摘要:
The present invention provides a catalytic cracking catalyst for heavy oil and preparation methods thereof. The catalyst comprises 2 to 50% by weight of a phosphorus-containing ultrastable rare earth Y-type molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of a rare earth oxide. The phosphorus-containing ultra-stable rare earth Y-type molecular sieve uses a NaY molecular sieve as a raw material. The raw material is subjected to a rare-earth exchange and a dispersing pre-exchange; the molecular sieve slurry is then filtered, washed with water and subjected to a first calcination to obtain a rare earth sodium Y molecular sieve which has been subjected to such “first-exchange first-calcination”, wherein the steps of rare earth exchange and dispersing pre-exchange are not restricted in sequence; and then the rare earth sodium Y molecular sieve which has been subjected to “one-exchange one-calcination” is subjected to “second exchange and second calcination” including ammonium exchange and a phosphorus modification, wherein the steps of the ammonium exchange and the phosphorus modification are not restricted in sequence. The steps of the ammonium exchange and the phosphorus modification can be conducted continuously or non-continuously, the second calcination is conducted after the ammonium exchange for reducing sodium, the phosphorus modification can be conducted before or after the second calcination. The catalyst provided by the invention has the characteristics of high heavy oil conversion capacity, high total liquid yield, and high yield of light oil.
摘要:
The present invention provides a magnesium-modified ultra-stable rare earth type Y molecular sieve and the preparation method thereof, which method is carried out by subjecting a NaY molecular sieve as the raw material to a rare earth exchange and a dispersing pre-exchange, then to an ultra-stabilization calcination treatment, and finally to a magnesium modification. The molecular sieve comprises 0.2 to 5% by weight of magnesium oxide, 1 to 20% by weight of rare earth oxide, and not more than 1.2% by weight of sodium oxide, and has a crystallinity of 46 to 63%, and a lattice parameter of 2.454 nm to 2.471 nm. In contrast to the prior art, in the molecular sieve prepared by this method, rare earth ions are located in sodalite cages, which is demonstrated by the fact that no rare earth ion is lost during the reverse exchange process. Moreover, the molecular sieve prepared by such a method has a molecular particle size D(v,0.5) of not more than 3.0 μm and a D(v,0.9) of not more than 20 μm. Such a molecular sieve has both high stability and high selectivity for the target product, while cracking catalysts using the molecular sieve as an active component is characterized by a high heavy-oil-conversion capacity and a high yield of valuable target products.