摘要:
The present invention relates to a cable-type secondary battery comprising an inner electrode comprising at least two anodes arranged in parallel, the anode extending longitudinally and having a horizontal cross section of a predetermined shape, the anode having an electrolyte layer thereon serving as an ion channel; an outer electrode comprising a cathode including a cathode active material layer surrounding the inner electrode; and a protection coating surrounding the outer electrode. The cable-type secondary battery has free shape adaptation due to its linearity and flexibility. A plurality of inner electrodes within a tubular outer electrode lead to an increased contact area therebetween and consequently a high battery rate. It is easy to control the capacity balance between the inner and outer electrodes by adjusting the number of inner electrodes. A short circuit is prevented due to the electrolyte layer formed on the inner electrode.
摘要:
Disclosed is an electrolyte for an electrochemical device. The electrolyte includes a composite of a plastic crystal matrix electrolyte doped with an ionic salt and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the crosslinked polymer structure. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner by the method. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength.
摘要:
A coupling socket of a cable-type secondary battery includes a first connection unit capable of being electrically connected to a terminal of a first polarity electrode of a cable-type secondary battery, a second connection unit capable of being electrically connected to a terminal of a second polarity electrode of another cable-type secondary battery, and a body electrically connected to the first connection unit and the second connection unit, wherein at least one of the first connection unit and the second connection unit is pivotal.
摘要:
Disclosed is a solid electrolyte for an electrochemical device. The solid electrolyte includes a composite consisting of: a plastic crystal matrix electrolyte doped with an ionic salt; and a network of a non-crosslinked polymer and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the non-crosslinked polymer/crosslinked polymer structure network. Particularly, the electrolyte is highly flexible. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength in terms of flexibility.
摘要:
Provided is a cable-type secondary battery including an inner electrode comprising at least two anodes arranged in parallel that extend longitudinally and have a horizontal cross section of a predetermined shape, an electrolyte layer serving as an ion channel surrounding the inner electrode, an outer electrode comprising a tubular cathode having a horizontal cross section of a predetermined shape and surrounding the electrolyte layer, and a protection coating surrounding the outer electrode. The cable-type secondary battery has free shape adaptation due to its linearity and flexibility. A plurality of inner electrodes within a tubular outer electrode leads to an increased contact area therebetween and consequently a high battery rate. It is easy to control the capacity balance between the inner and outer electrodes by adjusting the number of inner electrodes.
摘要:
Disclosed is a solid electrolyte for an electrochemical device. The solid electrolyte includes a composite consisting of: a plastic crystal matrix electrolyte doped with an ionic salt; and a network of a non-crosslinked polymer and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the non-crosslinked polymer/crosslinked polymer structure network. Particularly, the electrolyte is highly flexible. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength in terms of flexibility.
摘要:
The present invention relates to a cable-type secondary battery comprising an inner electrode comprising at least two anodes arranged in parallel, the anode extending longitudinally and having a horizontal cross section of a predetermined shape, the anode having an electrolyte layer thereon serving as an ion channel; an outer electrode comprising a cathode including a cathode active material layer surrounding the inner electrode; and a protection coating surrounding the outer electrode. The cable-type secondary battery has free shape adaptation due to its linearity and flexibility. A plurality of inner electrodes within a tubular outer electrode lead to an increased contact area therebetween and consequently a high battery rate. It is easy to control the capacity balance between the inner and outer electrodes by adjusting the number of inner electrodes. A short circuit is prevented due to the electrolyte layer formed on the inner electrode.
摘要:
Disclosed is an electrolyte for an electrochemical device. The electrolyte includes a composite of a plastic crystal matrix electrolyte doped with an ionic salt and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the crosslinked polymer structure. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner by the method. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength.
摘要:
A coupling socket of a cable-type secondary battery includes a first connection unit capable of being electrically connected to a terminal of a first polarity electrode of a cable-type secondary battery, a second connection unit capable of being electrically connected to a terminal of a second polarity electrode of another cable-type secondary battery, and a body electrically connected to the first connection unit and the second connection unit, wherein at least one of the first connection unit and the second connection unit is pivotal.
摘要:
Provided is a cable-type secondary battery including an inner electrode comprising at least two anodes arranged in parallel that extend longitudinally and have a horizontal cross section of a predetermined shape, an electrolyte layer serving as an ion channel surrounding the inner electrode, an outer electrode comprising a tubular cathode having a horizontal cross section of a predetermined shape and surrounding the electrolyte layer, and a protection coating surrounding the outer electrode. The cable-type secondary battery has free shape adaptation due to its linearity and flexibility. A plurality of inner electrodes within a tubular outer electrode leads to an increased contact area therebetween and consequently a high battery rate. It is easy to control the capacity balance between the inner and outer electrodes by adjusting the number of inner electrodes.