摘要:
A semiconductor device having a plurality of conductive layers is disclosed. The device has first level conductors (9) formed spaced apart on a semiconductor substrate (1). The semiconductor substrate (1) is provided with impurity diffusion regions (11) in its major surface between adjacent first level conductors (9). A triple layer insulation formed of a pair of oxide layers (12, 14) and an silicon oxide layer (13) sandwiched between the oxide layers (12, 14) covers the semiconductor substrate (1) and the first level conductors (9) thereon. At least one contact hole (15) is formed to extend through the triple layer insulation to either the impurity diffusion region (11) in the semiconductor substrate (1) or the first level conductor (9) on the semiconductor substrate (1). A second level conductor (16, 17) is provided on the triple layer insulation and on the inner surrounding wall of the contact hole (15). Each of the three insulating layers in the triple layer insulation has its hole-defining surface exposed at the contact hole (15) flush with or displaced laterally into the contact hole (15) away from a corresponding hole-defining exposed surface of the next overlying insulating layer.
摘要:
Two trenches are formed at a predetermined distance on a main surface of a semiconductor substrate. An oxide film and a nitride film are successively formed on the main surface of the semiconductor including the inner surfaces of the trenches. After a resist is formed over the whole surface including the inner surfaces of the trenches, the resist is patterned to expose a portion of the nitride film on a side surface of each trench. The exposed portions of the nitride film are removed by using the patterned resist as a mask and thermal oxidation is applied. Then, an isolation oxide film is formed on a region between the trenches and an end of a bird's beak is located on a side surface of each trench and is connected to the oxide film formed in each trench.
摘要:
A complementary semiconductor device having an improved capability of isolating devices comprises a P well 3 and an N well 2 both formed adjacent to each other on a main surface of a substrate 1, an N type impurity layer formed in the P well 8 on the main surface of the substrate, a P type impurity layer formed in the N well 9 on the main surface of the substrate, an N type region formed at the junction of the N well and the P well 71 on the main surface of the substrate, a first shield electrode 52 formed between the N type impurity layer 8 and the N type region 71 on the main surface of the substrate through an insulating film and a second shield electrode 51 formed between the N type region 71 and the P type impurity layer 9 on the main surface of the substrate through an insulating film. The first shield electrode 52 is connected to a potential V.sub.SS and the second shield electrode 51 and the N type region 71 are connected to a potential V.sub.CC, so that an N channel MOS transistor 101 comprising the first shield electrode 52 does not turn on and a device comprising the second shield electrode does not form a field effect transistor.
摘要:
A semiconductor device includes a substrate (4) in a periphery of which are formed elements isolating regions. A bonding pad (3) is formed above the elements isolating region, with an isolation layer (7) provided therebetween. An underlying layer (12) having a buffering function is formed on a surface of the bonding pad and the semiconductor substrate. In one aspect of the invention, wherein the elements isolating region is formed of LOCOS film (30), the underlying layer is formed between the bonding pad and the LOCOS film. In another aspect of the invention, the elements isolating region is of a field-shield structure (13, 14), and the underlying layer (12) is formed by separating a part of a gate electrode layer (14) of the field shield into an island. The underlying layer buffers the structure against an external force that is applied on the bonding pad in a bonding processing, to thereby prevent generation of cracks in the semiconductor layer.
摘要:
In a DRAM having stacked capacitor cells, elements are isolated by field shield isolating structure. The field shield isolating structure is formed surrounding both X and Y directions of the memory cell in the DRAM. The field shield isolating structure comprises an isolating electrode layer formed on a semiconductor substrate between adjacent memory cells with an insulating film interposed therebetween. Two impurity regions included in the adjacent memory cells and the isolating electrode layer constitute a MOS transistor. A voltage for maintaining the MOS transistor normally-off is applied to the isolating electrode layer. A portion of the stacked capacitor extends to the isolating electrode layer. One of the source/drain regions of the MOS transistor is formed in self-alignment, using a sidewall spacer formed of an insulating film on a sidewall of the field shield electrode as a mask.
摘要:
A complementary semiconductor device having an improved capability of isolating devices comprises a P well 3 and an N well 2 both formed adjacent to each other on a main surface of a substrate 1, an N type impurity layer formed in the P well 8 on the main surface of the substrate, a P type impurity layer formed in the N well 9 on the main surface of the substrate, an N type region formed at the junction of the N well and the P well 71 on the main surface of the substrate, a first shield electrode 52 formed between the N type impurity layer 8 and the N type region 71 on the main surface of the substrate through an insulating film and a second shield electrode 51 formed between the N type region 71 and the P type impurity layer 9 on the main surface of the substrate through an insulating film. The first shield electrode 52 is connected to a potential V.sub.SS and the second shield electrode 51 and the N type region 71 are connected to a potential V.sub.CC, so that an N channel MOS transistor 101 comprising the first shield electrode 52 does not turn on and a device comprising the second shield electrode does not form a field effect transistor.
摘要:
A semiconductor device has MOS field effect transistors isolated by a field shield. The field shield has a gate of conductor layers formed spaced apart from each other on a silicon substrate through an insulating film and with the surface thereof being covered with an insulating film. In regions isolated by the field shield, MOS field effect transistors are formed. Each of the MOS field effect transistors has a gate electrode of a conductor layer formed on the silicon substrate through an insulating film and with the surface thereof being covered with an insulating film. An impurity diffused region is formed in a region on the silicon substrate between the gate electrode and the field shield. A portion on an exposed surface of the impurity diffused region between the field shield and the gate electrode is selectively filled with a tungsten buried layer. The tungsten buried layer is formed, flattened relative to the gate electrode and the gate constituting the field shield.
摘要:
In an element forming region (10) of a semiconductor substrate (1), there are provided a gate electrode (2), sidewall insulating films (4), impurity diffusion regions (5a and 5b) of a lower concentration having their one ends are overlapped with the side sections of the gate electrode (2), and impurity diffusion regions (6a and 6b) of a higher concentration having their one ends are overlapped with the side sections of the sidewall insulating films (4). In an element isolation region (7) of the semiconductor substrate, there are formed an electrostatic screening electrode (31) for element isolation and an insulating film (30) substantially enclosing the electrostatic screening electrode. By employing the electrostatic screening electrode (31) for element isolation in the LDD MOS transistor, there is obtained a semiconductor device of high performance and reliability which is free from intrusion of impurities from the element isolation region.
摘要:
A semiconductor memory device according to the present invention comprises a memory cell having one transistor and one stacked capacitor. The stacked capacitor is stacked on the surface of a semiconductor substrate. Further, the stacked capacitor has a structure extending on a gate electrode and a word line through an insulating layer. A lower electrode layer of the capacitor had various concave/convex shapes, i.e. step portions and projecting portions formed on the surface thereof. These shapes are made by employing various etching processes. The lower electrode layer has such various concave/convex shapes formed thereon, so that a surface area and capacitance of the capacitor can be increased.
摘要:
Disclosed is an LDDMOSFET, in which a gate electrode (2) having a cross-sectional shape having a lower side and an upper side longer than the upper side is formed of only conductive materials, and diffusion layers (5b, 6b) of low concentration and high concentration constituting a drain are both formed so as to be overlapped with portions below the gate electrode (2) utilizing the shape of this gate electrode (2). Since the gate electrode (2) is formed of only the conductive materials, it becomes easy to word the gate electrode (2) so as to be in a desired shape. Since the diffusion layers (5b, 6b) of low concentration and high concentration constituting the drain are both overlapped with the portions below the gate electrode (2), the performance as a transistor is not degraded even if the polarity of the surface of the diffusion layer (5b, 6b) of low concentration is inverted by the effect of hot electrons.