摘要:
Example embodiments relate to an apparatus for drying a substrate. The apparatus may include a housing including first barrier walls having a first height, a rotary chuck that is disposed within the housing and configured to rotate the substrate, a nozzle system that is disposed above the rotary chuck and configured to supply a fluid onto the substrate, a cleaning liquid supply unit supplying a cleaning liquid for cleaning the substrate to the nozzle system, and a drying liquid supply unit supplying a drying liquid for drying the substrate to the nozzle system.
摘要:
A method of forming a capacitor structure and manufacturing a semiconductor device, the method of forming a capacitor structure including sequentially forming a first mold layer, a supporting layer, a second mold layer, an anti-bowing layer, and a third mold layer on a substrate having a conductive region thereon; partially removing the third mold layer, the anti-bowing layer, the second mold layer, the supporting layer, and the first mold layer to form a first opening exposing the conductive region; forming a lower electrode on a sidewall and bottom of the first opening, the lower electrode being electrically connected to the conductive region; further removing the third mold layer, the anti-bowing layer, and the second mold layer; partially removing the supporting layer to form a supporting layer pattern; removing the first mold layer; and sequentially forming a dielectric layer and upper electrode on the lower electrode and the supporting layer pattern.
摘要:
In a method of forming a capacitor, a first mold layer pattern including a first insulating material may be formed on a substrate. The first mold layer pattern may have a trench. A supporting layer including a second insulating material may be formed in the trench. The second insulating material may have an etching selectivity with respect to the first insulating material. A second mold layer may be formed on the first mold layer pattern and the supporting layer pattern. A lower electrode may be formed through the second mold layer and the first mold layer pattern. The lower electrode may make contact with a sidewall of the supporting layer pattern. The first mold layer pattern and the second mold layer may be removed. A dielectric layer and an upper electrode may be formed on the lower electrode and the supporting layer pattern.
摘要:
An insulation layer may be formed on an object having a contact region. The insulation layer may be partially etched to form an opening exposing the contact region. A material layer including silicon and oxygen may be formed on the exposed contact region. A metal layer may be formed on the material layer including silicon and oxygen. The material layer including silicon and oxygen may be reacted with the metal layer to form a metal oxide silicide layer at least on the contact region. A conductive layer may be formed on the metal oxide silicide layer to fill up the opening.
摘要:
Method of manufacturing semiconductor device are provided including forming an insulation layer having a pad on a substrate; forming an etch stop layer on the insulation layer and the pad; forming a mold structure having at least one mold layer on the etch stop layer; forming a first supporting layer on the mold structure; etching the first supporting layer and the mold structure to form a first opening exposing the etch stop layer; forming a spacer on a sidewall of the first opening; etching the etch stop layer using the spacer as an etching mask to form a second opening, different from the first opening, exposing a first portion of the pad having a first associated area; etching the etch stop layer using the spacer as an etching mask to form a third opening exposing a second portion of the pad having a second associated area, the second associated area being larger than the first associated area; and etching the mold structure to form a fourth opening having a width larger than a width of the third opening.
摘要:
In a supercritical fluid method a supercritical fluid is supplied into a process chamber. The supercritical fluid is discharged from the process chamber as a supercritical fluid process proceeds. A concentration of a target material included in the supercritical fluid discharged from the process chamber is detected during the supercritical fluid process. An end point of the supercritical fluid process may be determined based on a detected concentration of the target material.
摘要:
In a vertical-type non-volatile memory device, an insulation layer pattern is provided on a substrate, the insulation layer pattern having a linear shape. Single-crystalline semiconductor patterns are provided on the substrate to make contact with both sidewalls of the insulation layer pattern, the single-crystalline semiconductor patterns having a pillar shape that extends in a vertical direction relative to the substrate. A tunnel oxide layer is provided on the single-crystalline semiconductor pattern. A lower electrode layer pattern is provided on the tunnel oxide layer and on the substrate. A plurality of insulation interlayer patterns is provided on the lower electrode layer pattern, the insulation interlayer patterns being spaced apart from one another by a predetermined distance along the single-crystalline semiconductor pattern. A charge-trapping layer and a blocking dielectric layer are sequentially formed on the tunnel oxide layer between the insulation interlayer patterns. A plurality of control gate patterns is provided on the blocking dielectric layer between the insulation interlayer patterns. An upper electrode layer pattern is provided on the tunnel oxide layer and on the uppermost insulation interlayer pattern.
摘要:
In a method of forming a capacitor, a first mold layer pattern including a first insulating material may be formed on a substrate. The first mold layer pattern may have a trench. A supporting layer including a second insulating material may be formed in the trench. The second insulating material may have an etching selectivity with respect to the first insulating material. A second mold layer may be formed on the first mold layer pattern and the supporting layer pattern. A lower electrode may be formed through the second mold layer and the first mold layer pattern. The lower electrode may make contact with a sidewall of the supporting layer pattern. The first mold layer pattern and the second mold layer may be removed. A dielectric layer and an upper electrode may be formed on the lower electrode and the supporting layer pattern.
摘要:
In a method of forming a capacitor, a first mold layer pattern including a first insulating material may be formed on a substrate. The first mold layer pattern may have a trench. A supporting layer including a second insulating material may be formed in the trench. The second insulating material may have an etching selectivity with respect to the first insulating material. A second mold layer may be formed on the first mold layer pattern and the supporting layer pattern. A lower electrode may be formed through the second mold layer and the first mold layer pattern. The lower electrode may make contact with a sidewall of the supporting layer pattern. The first mold layer pattern and the second mold layer may be removed. A dielectric layer and an upper electrode may be formed on the lower electrode and the supporting layer pattern.
摘要:
In a method of forming a capacitor, a first mold layer pattern including a first insulating material may be formed on a substrate. The first mold layer pattern may have a trench. A supporting layer including a second insulating material may be formed in the trench. The second insulating material may have an etching selectivity with respect to the first insulating material. A second mold layer may be formed on the first mold layer pattern and the supporting layer pattern. A lower electrode may be formed through the second mold layer and the first mold layer pattern. The lower electrode may make contact with a sidewall of the supporting layer pattern. The first mold layer pattern and the second mold layer may be removed. A dielectric layer and an upper electrode may be formed on the lower electrode and the supporting layer pattern.