摘要:
A method of passivating the surface of a Si wafer is disclosed including the steps of cleaning the surface of the Si wafer and depositing an alkaline earth metal on the clean surface at a wafer temperature in a range of approximately 400.degree. C. to 750.degree. C. The surface is monitored during deposition to detect a (4.times.2) surface reconstruction pattern indicating approximately a one-quarter monolayer of alkaline earth metal is formed. The wafer is annealed at a temperature in a range of 800.degree. C. to 900.degree. C. until the alkaline earth metal forms an alkaline earth metal silicide with a (2.times.1) surface pattern on the surface.
摘要:
A method of preparing crystalline alkaline earth metal oxides on a Si substrate wherein a Si substrate with amorphous silicon dioxide on a surface is provided. The substrate is heated to a temperature in a range of 700.degree. C. to 800.degree. C. and exposed to a beam of alkaline earth metal(s) in a molecular beam epitaxy chamber at a pressure within approximately a 10.sup.-9 -10.sup.-10 Torr range. During the molecular beam epitaxy the surface is monitored by RHEED technique to determine a conversion of the amorphous silicon dioxide to a crystalline alkaline earth metal oxide. Once the alkaline earth metal oxide is formed, additional layers of material, e.g. additional thickness of an alkaline earth metal oxide, single crystal ferroelectrics or high dielectric constant oxides on silicon for non-volatile and high density memory device applications.
摘要:
A method of forming a thin silicide layer on a silicon substrate 12 including heating the surface of the substrate to a temperature of approximately 500.degree. C. to 750.degree. C. and directing an atomic beam of silicon 18 and an atomic beam of an alkaline-earth metal 20 at the heated surface of the substrate in a molecular beam epitaxy chamber at a pressure in a range below 10.sup.-9 Torr. The silicon to alkaline-earth metal flux ratio is kept constant (e.g. Si/Ba flux ratio is kept at approximately 2:1) so as to form a thin alkaline-earth metal silicide layer (e.g. BaSi.sub.2) on the surface of the substrate. The thickness is determined by monitoring in situ the surface of the single crystal silicide layer with RHEED and terminating the atomic beam when the silicide layer is a selected submonolayer to one monolayer thick.
摘要:
A complementary III-V heterostructure field effect device includes the same refractory ohmic material for providing the contacts (117, 119), to both the N-type and P-type devices. Furthermore, the refractory ohmic contacts (117, 119) directly contact the InGaAs channel layer (16) to provide improved ohmic contact, despite the fact that the structure incorporates an advantageous high aluminum composition barrier layer (18) and an advantageous GaAs cap layer (20).
摘要:
A semiconductor device, including: a semiconductor material; a conductive element; and a substantially monocrystalline insulator disposed between the semiconductor material and the conductive element and substantially lattice matched to the semiconductor material.
摘要:
A thermoelectric power generator and method of generating thermoelectric power in a steam power cycle utilizing latent steam heat including a condenser, a heat source, such as steam, and at least one thermoelectric module. The condenser includes a plurality of condenser tubes each having included therein a heat extractor. The heat source is in communication with the condenser and is characterized as providing thermal energy to the condenser. The at least one thermoelectric module, including a plurality of thermoelectric elements, is positioned in communication with at least one of the plurality of condenser tubes so that thermal energy flows through the thermoelectric elements thereby generating electrical power.
摘要:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, oxygen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, oxygen, and a metal in the form XSiO2, where X is a metal.
摘要:
A ferroelectric semiconductor device (10) and a method of manufacturing the ferroelectric semiconductor device (10). The ferroelectric semiconductor device (10) is manufactured from a substrate (11) that has a layer (14) of ferroelectric material sandwiched between a substrate (13) and a layer (16) of silicon. A gate structure (24) is formed on the layer (16) of silicon. A source region is formed in a portion of the layer (16) of silicon adjacent one side of the gate structure (24) and a drain region is formed in a portion of the layer (16) of silicon adjacent an opposing side of the gate structure (24).
摘要:
A ferroelectric memory array (20) monolithically integrated with a field programmable gate array (32) into a semiconductor circuit (10). The ferroelectric memory array (20) is suitable for a semiconductor manufacturer to program the configuration data that is used in the field programmable gate array (32) prior to shipment and installation in an electronic system. The memory array (20) provides the data that configures the field programmable gate array (32) for functionality of the Configurable Logic Blocks (CLBs) in the field programmable gate array (32). Should the field programmable gate array (32) circuit lose power, the non-volatile memory array (20) provides a shift register (26) with the data to reconfigure the field programmable gate array (32).
摘要:
A battery pack with reduced magnetic field emissions includes a plurality of cells (1301,1302) coupled electrically together by a first electrical conductor (1307) and a second electrical conductor (1308). The first electrical conductor (1307) couples positive terminals (1305,1306) to a terminal block (1311), while the second electrical conductor (1308) couples the negative terminals (1303,1304) to the terminal block (1311). Each cell (1301,1302) contains an asymmetrical internal electrode construction (1313,1314) having electrical tabs (502,503) coupled to a cathode and anode. The cells (1301,1302) can be arranged with their corresponding asymmetrical internal electrode constructions (1313,1314) oriented in different directions to reduce magnetic field emissions. The first electrical conductor (1307) and second electrical conductor (1308) can be routed such that magnetic fields generated by discharge currents tend to reduce other magnetic fields produced by other components within the battery pack.