摘要:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, oxygen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, oxygen, and a metal in the form XSiO2, where X is a metal.
摘要:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, oxygen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, oxygen, and a metal in the form XSiO2, where X is a metal.
摘要:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, nitrogen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, nitrogen, and a metal in the form MSiN2, where M is a metal. In a second embodiment, the interface comprises an atomic layer of silicon, a metal, and a mixture of nitrogen and oxygen in the form MSi[N1−Ox]2, where M is a metal and X is 0≦X
摘要:
A semiconductor structure comprises a silicon substrate (10), one or more layers of single crystal oxides or nitrides (26), and an interface (14) between the silicon substrate and the one or more layers of single crystal oxides or nitrides, the interface manufactured with a crystalline material which matches the lattice constant of silicon. The interface comprises an atomic layer of silicon, nitrogen, and a metal in the form MSiN2, where M is a metal. In a second embodiment, the interface comprises an atomic layer of silicon, a metal, and a mixture of nitrogen and oxygen in the form MSi[N1−xOx]2, where M is a metal and X is 0≦X
摘要翻译:半导体结构包括硅衬底(10),一层或多层单晶氧化物或氮化物(26),以及在硅衬底和一层或多层单晶氧化物或氮化物之间的界面(14),界面 用与硅的晶格常数匹配的结晶材料制成。 该界面包括硅,氮和MSiN 2形式的金属的原子层,其中M是金属。 在第二个实施方案中,界面包括形式为MSi [N1-xOx] 2的硅原子层,金属和氮和氧的混合物,其中M是金属,X是0 <= X <1。
摘要:
A method of fabricating a semiconductor structure including the steps of: providing a silicon substrate having a surface; forming by atomic layer deposition a monocrystalline seed layer on the surface of the silicon substrate; and forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer, where providing a substrate includes providing a substrate having formed thereon a silicon oxide, and wherein forming by atomic layer deposition a seed layer further includes depositing a layer of a metal oxide onto a surface of the silicon oxide, flushing the layer of metal oxide with an inert gas, and reacting the metal oxide and the silicon oxide to form a monocrystalline silicate.
摘要:
A method for fabricating a semiconductor structure including the steps of providing a silicon substrate (10) having a surface (12); forming an interface including a seed layer (18) adjacent to the surface (12) of the silicon substrate (10), forming a buffer layer (20) utilizing molecular oxygen; and forming one or more layers of a high dielectric constant oxide (22) on the buffer layer (20) utilizing activated oxygen.
摘要:
A method for fabricating a semiconductor structure including the steps of providing a silicon substrate (10) having a surface (12); forming amorphous silicon dioxide (14) on the surface (12) of the silicon substrate (10); providing a metal oxide (18) on the amorphous silicon dioxide (14); heating the semiconductor structure to form an interface comprising a seed layer (20) adjacent the surface (12) of the silicon substrate (10); and forming one or more layers of a high dielectric constant oxide (22) on the seed layer (20).
摘要:
High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
摘要:
High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. These semiconductor materials have applications involving communications with high frequency signals including intelligent transportation systems such as automobile radar systems, smart cruise control systems, collision avoidance systems, and automotive navigation systems; and electronic payment systems that use microwave or RF signals such as electronic toll payment for various transportation systems including train fares, and toll roads, parking structures, and toll bridges for automobiles.
摘要:
A structure and method for forming a high dielectric constant device structure includes a monocrystalline semiconductor substrate and an insulating layer formed of an epitaxially grown oxide such as (A)y(TixM1-x)1-yO3, wherein A is an alkaline earth metal or a combination of alkaline earth metals and M is a metallic or semi-metallic element. Semiconductor devices formed in accordance with the present invention exhibit low leakage current density.