摘要:
Methods are provided for mechanically chopping nanotubes and other nanoscale fibrous materials. The method includes forming a macroscale article which include the nanoscale fibers, and then mechanically cutting the macroscale article into a finely divided form. In one embodiment, these steps are repeated. The nanoscale fibers may be carbon nanotubes, which optionally are aligned in the macroscale article. The macroscale article may be in the form of or include one or more buckypapers. In one embodiment, the macroscale article further includes a solid matrix material in which the nanoscale fibers are contained or dispersed. The forming step can include making a suspension of nanoscale fibers dispersed in a liquid medium and then solidifying the liquid medium to form the macroscale article. After the mechanical cutting step, the medium can be dissolved or melted to enable separation of the chopped nanoscale fibers from the medium.
摘要:
Methods are provided for mechanically chopping nanotubes and other nanoscale fibrous materials. The method includes forming a macroscale article which include the nanoscale fibers, and then mechanically cutting the macroscale article into a finely divided form. In one embodiment, these steps are repeated. The nanoscale fibers may be carbon nanotubes, which optionally are aligned in the macroscale article. The macroscale article may be in the form of or include one or more buckypapers. In one embodiment, the macroscale article further includes a solid matrix material in which the nanoscale fibers are contained or dispersed. The forming step can include making a suspension of nanoscale fibers dispersed in a liquid medium and then solidifying the liquid medium to form the macroscale article. After the mechanical cutting step, the medium can be dissolved or melted to enable separation of the chopped nanoscale fibers from the medium.
摘要:
Methods are provided for functionalizing nanoscale fibers and for making composite structures from these functionalized nanomaterials. The method includes contacting a network of nanoscale fibers with an oxidant to graft at least one epoxide group to at least a portion of the network of nanoscale fibers. A network of functionalized nanoscale fibers or buckypapers may include carbon nanotubes having a mean length of at least 1 mm and having an epoxide group grafted onto the nanotubes.
摘要:
Methods are provided for functionalizing a macroscopic film comprised of nanoscale fibers by controlled irradiation. The methods may include the steps of (a) providing a nanoscale fiber film material comprising a plurality of nanoscale fibers (which may include single wall nanotubes, multi-wall nanotubes, carbon nanofibers, or a combination thereof); and (b) irradiating the nanoscale fiber film material with a controlled amount of radiation in the open air or in a controlled atmosphere. The step of irradiating the nanoscale fiber film material is effective to functionalize the plurality of nanoscale fibers. Irradiated nanoscale fiber films are also provided having improved mechanical and electrical conducting properties.
摘要:
Apparatuses with improved flammability properties and methods for altering the flammability properties of the apparatuses are provided. In certain embodiments, the apparatus comprises an occupant structure having an exterior portion and an interior portion defining an occupant space. The interior portion is formed, at least in part, of a composite material and a first nanoadditive fixed on a surface of the composite material proximate the occupant space. In one embodiment, the nanoadditive may comprise a continuous network of nanoscale fibers.
摘要:
Methods and devices are provided for the continuous production of a network of nanotubes or other nanoscale fibers. The method includes making a suspension of nanoscale fibers dispersed in a liquid medium, optionally with surfactant and/or sonication, and filtering the suspension by moving a filter membrane through the suspension, such that the nanoscale fibers are deposited directly on the filter membrane as the fluid medium flows through the filter membrane, thereby forming a continuous membrane of the nanoscale fibers. The deposition of the nanoscale fibers can occur when and where the filter membrane moves into contact with a static, porous filter element or a dynamic, porous filter element. The filtering can be conducted within a magnetic field effective to align the nanoscale fibers, and/or with the aid of vacuum to pull water through the filter membrane, applied pressure to press water though the filter membrane, or a combination thereof.
摘要:
Electromagnetic interference (EMI) shielding structure and methods of making such structures are provided. In one case, a method is provided for making a lightweight composite structure for electromagnetic interference shielding, including the steps of providing a nanoscale fiber film which comprises a plurality of nanoscale fibers; and combining the nanoscale fiber film with one or more structural materials to form a composite material which is effective as an electromagnetic interference shielding structure. In another case, a method is provided for shielding a device which includes an electrical circuit from electromagnetic interference comprising the steps of providing a nanoscale fiber film which comprises a plurality of nanoscale fibers; and incorporating the nanoscale fiber film into an exterior portion of the device to shield an interior portion of the device from electromagnetic interference.
摘要:
Methods and devices are provided for the continuous production of a network of nanotubes or other nanoscale fibers. The method includes making a suspension of nanoscale fibers dispersed in a liquid medium, optionally with surfactant and/or sonication, and filtering the suspension by moving a filter membrane through the suspension, such that the nanoscale fibers are deposited directly on the filter membrane as the fluid medium flows through the filter membrane, thereby forming a continuous membrane of the nanoscale fibers. The deposition of the nanoscale fibers can occur when and where the filter membrane moves into contact with a static, porous filter element or a dynamic, porous filter element. The filtering can be conducted within a magnetic field effective to align the nanoscale fibers, and/or with the aid of vacuum to pull water through the filter membrane, applied pressure to press water though the filter membrane, or a combination thereof.
摘要:
A membrane electrode assembly (MEA) for a fuel cell comprising a catalyst layer and a method of making the same. The catalyst layer can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on buckypaper. The method can include the steps of placing buckypaper in a vessel with a catalyst-precursor salt and a fluid. The temperature and pressure conditions within the vessel are modified so as to place the fluid in the supercritical state. The supercritical state of the supercritical fluid containing the precursor salt is maintained for period of time to impregnate the buckypaper with the catalyst-precursor salt. Catalyst nanoparticles are deposited on the buckypaper. The supercritical fluid and the precursor are removed to form a metal catalyst impregnated buckypaper.
摘要:
This disclosure provides articles that include functionalized nanoscale fibers and methods for functionalizing nanoscale fibers. The functionalized nanoscale fibers may be made by oxidizing a network of nanoscale fibers, grafting one or more molecules or polymers to the oxidized nanoscale fibers, and cross-linking at least a portion of the molecules or polymers grafted to the oxidized nanoscale fibers. The functionalized nanoscale fibers may be used to make articles.