Abstract:
A semiconductor substrate is provided with a through-substrate via comprising a metallization and an opening. A solder ball is placed on the opening. A reflow of the solder ball is performed in such a way that the solder ball closes the through-substrate via and leaves a void in the through-substrate via.
Abstract:
A semiconductor substrate is provided with an annular cavity extending from a front side of the substrate to an opposite rear side. A metallization is applied in the annular cavity, thereby forming a through-substrate via and leaving an opening of the annular cavity at the front side. A solder ball is placed above the opening and a reflow of the solder ball is effected, thereby forming a void of the through-substrate via, the void being covered by the solder ball.
Abstract:
The semiconductor device comprises a semiconductor wafer with an integrated circuit, formed by a plurality of dies, a further semiconductor wafer, which differs from the semiconductor wafer in diameter and semiconductor material, the semiconductor wafer and the further semiconductor wafer being bonded to one another by means of a bonding layer, and an electrically conductive contact layer arranged on the further semiconductor wafer opposite to the bonding layer.
Abstract:
The semiconductor device comprises a semiconductor substrate (10) with a metallization (111) having an upper terminal layer (22) located at a front side (20) of the substrate. The metallization forms a through-substrate via (23) from the upper terminal layer to a rear terminal layer (13) located opposite to the front side at a rear side (21) of the substrate. The through-substrate via comprises an annular cavity (18) and a void (101), which may be filled with air or another gas. A solder ball (100) closes the void without completely filling it. A variety of interconnections for three-dimensional integration is offered by this scheme.