Abstract:
A thermal compression flip chip (TCFC) bump may be used for high performance products that benefit from a fine pitch. In one example, a new TCFC bump structure adds a metal pad underneath the TCFC copper pillar bump to cover the exposed aluminum bump pad. This new structure prevents the pad from corroding and reduces mechanical stress to the pad and underlying silicon dielectric layers enabling better quality and reliability and further bump size reduction. For example, a flip chip connection may include a substrate; a metal pad on a contact side of the substrate and a first passivation layer on the contact side of the substrate to protect the metal pad from corrosion.
Abstract:
An integrated circuit structure includes a semiconductor substrate, a metal pad over the semiconductor substrate, a passivation layer including a portion over the metal pad, a polymer layer over the passivation layer, and a Post-Passivation Interconnect (PPI) over the polymer layer. The PPI is electrically connected to the metal pad. The PPI includes a PPI line have a first width, and a PPI pad having a second width greater than the first width. The PPI pad is connected to the PPI line. The PPI pad includes an inner portion having a first thickness, and an edge portion having a second thickness smaller than the first thickness.
Abstract:
A semiconductor device has a conductive via in a first surface of a substrate. A first interconnect structure is formed over the first surface of the substrate. A first bump is formed over the first interconnect structure. The first bump is formed over or offset from the conductive via. An encapsulant is deposited over the first bump and first interconnect structure. A portion of the encapsulant is removed to expose the first bump. A portion of a second surface of the substrate is removed to expose the conductive via. The encapsulant provides structural support and eliminates the need for a separate carrier wafer when thinning the substrate. A second interconnect structure is formed over the second surface of the substrate. A second bump is formed over the first bump. A plurality of semiconductor devices can be stacked and electrically connected through the conductive via.
Abstract:
A technique which improves the reliability in coupling between a bump electrode of a semiconductor chip and wiring of a mounting substrate, more particularly a technique which guarantees the flatness of a bump electrode even when wiring lies in a top wiring layer under the bump electrode, thereby improving the reliability in coupling between the bump electrode and the wiring formed on a glass substrate. Wiring, comprised of a power line or signal line, and a dummy pattern are formed in a top wiring layer beneath a non-overlap region of a bump electrode. The dummy pattern is located to fill the space between wirings to reduce irregularities caused by the wirings and space in the top wiring layer. A surface protection film formed to cover the top wiring layer is flattened by CMP.
Abstract:
Disclosed is a fan-out back-to-back chip stacked package, comprising a back-to-back stack of a first chip and a second chip, an encapsulant, a plurality of vias disposed in the encapsulant, a first redistribution layer and a second redistribution layer. The encapsulant encapsulates the sides of the first chip and the sides of the second chip simultaneously and has a thickness not greater than the chip stacked height to expose a first active surface of the first chip and a second active surface of the second chip. The encapsulant has a first peripheral surface expanding from the first active surface and a second peripheral surface expanding from the second active surface. The first redistribution layer is formed on the first active surface and extended onto the first peripheral surface to electrically connect the first chip to the vias in the encapsulant. The second RDL is formed on the second active surface and extended onto the second peripheral surface to electrically connect the second chip to the vias in the encapsulant. Accordingly, the structure realizes a thin package configuration of multi-chip back-to-back stacking to reduce package warpage.
Abstract:
Methods and apparatuses for wafer level packaging (WLP) semiconductor devices are disclosed. A redistribution layer (RDL) is formed on a first passivation layer in contact with a conductive pad over a surface of a die. The RDL layer is on top of a first region of the first passivation layer. A second passivation layer is formed on the RDL layer with an opening to expose the RDL layer, and over the first passivation layer. An under bump metallization (UBM) layer is formed over the second passivation layer in contact with the exposed RDL layer. A second region of the first passivation layer disjoint from the first region is determined by projecting an outer periphery of a solder ball or other connector onto the surface.
Abstract:
A semiconductor device has a plurality of first semiconductor die mounted over an interface layer formed over a temporary carrier. An encapsulant is deposited over the first die and carrier. A flat shielding layer is formed over the encapsulant. A channel is formed through the shielding layer and encapsulant down to the interface layer. A conductive material is deposited in the channel and electrically connected to the shielding layer. The interface layer and carrier are removed. An interconnect structure is formed over conductive material, encapsulant, and first die. The conductive material is electrically connected through the interconnect structure to a ground point. The conductive material is singulated to separate the first die. A second semiconductor die can be mounted over the first die such that the shielding layer covers the second die and the conductive material surrounds the second die or the first and second die.
Abstract:
A semiconductor device has a conductive via in a first surface of a substrate. A first interconnect structure is formed over the first surface of the substrate. A first bump is formed over the first interconnect structure. The first bump is formed over or offset from the conductive via. An encapsulant is deposited over the first bump and first interconnect structure. A portion of the encapsulant is removed to expose the first bump. A portion of a second surface of the substrate is removed to expose the conductive via. The encapsulant provides structural support and eliminates the need for a separate carrier wafer when thinning the substrate. A second interconnect structure is formed over the second surface of the substrate. A second bump is formed over the first bump. A plurality of semiconductor devices can be stacked and electrically connected through the conductive via.
Abstract:
A die includes a substrate, a metal pad over the substrate, and a passivation layer covering edge portions of the metal pad. A metal pillar is formed over the metal pad. A portion of the metal pillar overlaps a portion of the metal pad. A center of the metal pillar is misaligned with a center of the metal pad.
Abstract:
A method for manufacturing semiconductor devices is provided. In the method, a conductive pad and a metal protrusion pattern are formed in a metallization layer. A passivation layer is conformally deposited over the metallization, and a protection layer is conformally deposited over the passivation layer. Further, a post-passivation interconnect structure (PPI) is conformally formed on the protection layer, and the PPI structure includes a landing pad region, a protrusion pattern over at least a portion of the landing pad region and a connection line electrically connected to the conductive pad. A solder bump is then placed on the landing pad region in contact with the protrusion pattern of PPI structure. A to semiconductor device with bum stop structure is also provided.