Abstract:
An optical sensor arrangement (10) comprises a light sensor (11), a current source (41), an analog-to-digital converter (12) and a switch (44) which selectively couples the light sensor (11) or the current source (41) to an input (14) of the analog-to-digital converter (12).
Abstract:
A signal conditioning circuit for a light sensor, in particular for an ambient light sensor, comprises a first integration stage (INT1) connected to a first sensor input (IN1) to receive a first and second sensor signal and a second integration stage (INT2) comprising a coupling input (IN2) to receive from the first integration stage (INT1) a first and second integrated sensor signal. A coupling stage (S3, C5) is connecting the first and second integration stages (INT1, INT2) and is designed to generate a difference signal from consecutively received integrated first and second integrated sensor signals. A sensor arrangement and a method for signal conditioning for a light sensor is also presented.
Abstract:
A light sensor arrangement according to the proposed principle comprises at least one first unshielded well (D0) and at least one second shielded well (D1) in a substrate (P). The at least one first unshielded well (D0) is being exposed to incident light (λ) and configured to generate a first sensor signal (Ch0) as a function of the incident light (λ). The at least one second shielded well (D1) in the substrate (p) being shielded from the incident light (λ) and configured to generate a second sensor signal (Ch1) as a function of the incident light (λ). The light sensor arrangement further comprises means for temperature compensation providing the first and second sensor signals (Ch0, Ch1) as temperature compensated sensor signals as a function of substrate temperature. Means to determine spectral content of the incident light (λ) are provided to determine the spectral content as a function of the temperature compensated first and second sensor signals (Ch0, Ch1).
Abstract:
A sensor arrangement for light sensing and temperature sensing comprises a first sensor input (1) for connecting a temperature sensor (11) and a second sensor input (2) for connecting a light sensor (21), in particular an ambient light sensor. A sensor switch (S3) electrically connects either the first or the second sensor input (1, 2) to an integration input (41) of an integrating analog-to-digital converter (4). A reference circuit (5) connects to the integration input (41) via a first switch (S2). A first reference input (42) of the integrating analog-to-digital converter (4) is to be connected with a first reference potential (Vb1). A counter (6) connects to an integration output (43) of the integrating analog-to-digital converter (4). And a controller unit (6) connects to the counter (6) and is designed to control the first switch (S2) depending on an integrated sensor signal (Vout) integrated by the integrating analog-to-digital converter (4).
Abstract:
A sensor arrangement for light sensing and temperature sensing comprises a first sensor input (1) for connecting a temperature sensor (11) and a second sensor input (2) for connecting a light sensor (21), in particular an ambient light sensor. A sensor switch (S3) electrically connects either the first or the second sensor input (1, 2) to an integration input (41) of an integrating analog-to-digital converter (4). A reference circuit (5) connects to the integration input (41) via a first switch (S2). A first reference input (42) of the integrating analog-to-digital converter (4) is to be connected with a first reference potential (Vb1). A counter (6) connects to an integration output (43) of the integrating analog-to-digital converter (4). And a controller unit (6) connects to the counter (6) and is designed to control the first switch (S2) depending on an integrated sensor signal (Vout) integrated by the integrating analog-to-digital converter (4).
Abstract:
An electric circuit of a switchable current source (10) comprises an input path (IP) comprising a first resistor (R1) and a controllable current source (CS) to provide a changeable current (Itrim) and an output current path (OP) including a controllable output driver (MN), a second resistor (R2) and an output terminal (LDR_PIN). A sensing voltage (VSENSE) is tapped at the output current path (OP) and is fed back to a regulator circuit (RC) by a feedback path (FP). The regulator circuit (RC) is connectable to the input path (IP) and the output path (OP) and provides an output signal (Vout2) to control the output current driver (MN). The switchable current source (10) enables to provide an output current (ILDR) at the output terminal (LDR_PIN) in dependence on the first and second resistor (R1, R2) and the changeable current (Itrim).
Abstract:
A digital-to-analog converter comprises a converter output (11), a dummy output (12), a first number N of current sources (13-17), a first switching arrangement (18), a first current divider (24), a second switching arrangement (31) and a second current divider (60). The current sources (13-17) are coupled via the first switching arrangement (18) to the converter output (11), the dummy output (12) or to an input current terminal (25) of the first current divider (24). The output current terminals (26-30) of the first current divider (24) are coupled via the second switching arrangement (31) to the converter output (11), the dummy output (12) or to an input current terminal (61) of the second current divider (60). The output current terminals (63-66) of the second current divider (60) are coupled to the converter output (11) or the dummy output (12).
Abstract:
An electric circuit of a switchable current source (10) comprises an input path (IP) comprising a first resistor (R1) and a controllable current source (CS) to provide a changeable current (Itrim) and an output current path (OP) including a controllable output driver (MN), a second resistor (R2) and an output terminal (LDR_PIN). A sensing voltage (VSENSE) is tapped at the output current path (OP) and is fed back to a regulator circuit (RC) by a feedback path (FP). The regulator circuit (RC) is connectable to the input path (IP) and the output path (OP) and provides an output signal (Vout2) to control the output current driver (MN). The switchable current source (10) enables to provide an output current (ILDR) at the output terminal (LDR_PIN) in dependence on the first and second resistor (R1, R2) and the changeable current (Itrim).
Abstract:
An optical sensor arrangement (10) comprises a photodiode (11) for providing a sensor current (IPD) and an analog-to-digital converter arrangement (12) which is coupled to the photodiode (11) and determines a digital value of the sensor current (IPD) in a charge balancing operation in a first phase (A) and in another conversion operation in a second phase (B).
Abstract:
An output buffer comprises a series connection of a first field effect transistor and a second field effect transistor, wherein the first field effect transistor is connected to a first supply potential terminal and the second field effect transistor is connected to a second supply potential terminal. An output terminal is connected to a common connection of the first transistor and the second transistor. The output buffer has a series connection of a resistive element and a capacitive element, wherein the capacitive element is connected to the output terminal, and a control circuit, to which an input signal is provided. The control circuit controls the transistors in such a way that turning off of a transistor is performed immediately, while turning on of a transistor is performed depending on the charging or discharging of the capacitive element, thus achieving a defined slew rate of the output signal at the output terminal.