摘要:
Some embodiments include a method. The method can include providing a carrier substrate, providing a release layer over the carrier substrate, and providing a device substrate over the carrier substrate and the release layer. Providing the device substrate can include bonding the device substrate to the carrier substrate, and bonding the device substrate to the release layer. Further, providing the release layer can include bonding the release layer to the carrier substrate. Meanwhile, the release layer can include polymethylmethacrylate, and the device substrate can be bonded to the carrier substrate with a first adhesion strength, the device substrate can be bonded to the release layer with a second adhesion strength less than the first adhesion strength, and the release layer can be bonded to the carrier substrate with a third adhesion strength greater than the second adhesion strength. Other embodiments of related methods and devices are also disclosed.
摘要:
Methods and apparatus for managing stack data in multi-core processors having scratchpad memory or limited local memory. In one embodiment, stack data management calls are inserted into software in accordance with an integer linear programming formulation and a smart stack data management heuristic. In another embodiment, stack management and pointer management functions are inserted before and after function calls and pointer references, respectively. The calls may be inserted in an automated fashion by a compiler utilizing an optimized stack data management runtime library.
摘要:
Health is a complex state that represents the continuously changing outcome of nearly all human activities and interactions. The invention provides efficient methods and arrays for health monitoring, diagnosis, treatment, and preventive care. The invention monitors a broad range of identifying molecules from a subject, such as circulating antibodies, and the invention evaluates a pattern of binding of those molecules to a peptide array. The characterization of the pattern of binding of such molecules to a peptide array with the methods of the invention provide a robust measure of a state of health of a subject.
摘要:
The disclosure relates generally to sequential state elements (SSEs), triple-mode redundant state machines (TMRSMs), and methods and systems for testing triple-mode redundant pipeline stages (TMRPSs) within the TMRSMs using triple-mode redundant SSEs (TMRSSEs). The SSEs, TMRSMs, TMRPSs, and TMRSSEs may be formed as integrated circuits on a semiconductor substrate. Of particular focus in this disclosure are SSEs used to sample and hold bit states. Embodiments of the SSEs have a self-correcting mechanism to protect against radiation-induced soft errors. The SSE may be provided in a pipeline circuit of a TMRSM to receive and store a bit state of a bit signal generated by combinational circuits within the pipeline circuit. More specifically, the SSEs may be provided in a TMRSSE configured to perform self-correction. Also disclosed are methods for using the TMRSSE to test redundant pipeline stages of the TMRSM.
摘要:
Biomolecule arrays on a substrate are described which contain a plurality of biomolecules, such as coding nucleic acids and/or isolated polypeptides, at a plurality of discrete, isolated, locations. The arrays can be used, for example, in high throughput genomics and proteomics for specific uses including, but not limited molecular diagnostics for early detection, diagnosis, treatment, prognosis, monitoring clinical response, and protein crystallography.
摘要:
Some embodiments include a semiconductor device. The semiconductor device includes a transistor having a gate metal layer, a transistor composite active layer, and one or more contact elements over the transistor composite active layer. The transistor composite active layer includes a first active layer and a second active layer, the first active layer is over the gate metal layer, and the second active layer is over the first active layer. Meanwhile, the semiconductor device also includes one or more semiconductor elements forming a diode over the transistor. The semiconductor element(s) have an N-type layer over the transistor, an I layer over the N-type layer, and a P-type layer over the I layer. Other embodiments of related systems and methods are also disclosed.
摘要:
Measuring the number of glomeruli in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. In particular, a recent Magnetic Resonance Imaging (MRI) technique, based on injection of a contrast agent, cationic ferritin, has been effective in identifying glomerular regions in the kidney. In various embodiments, a low-complexity, high accuracy method for obtaining the glomerular count from such kidney MRI images is described. This method employs a patch-based approach for identifying a low-dimensional embedding that enables the separation of glomeruli regions from the rest. By using only a few images marked by the expert for learning the model, the method provides an accurate estimate of the glomerular number for any kidney image obtained with the contrast agent. In addition, the implementation of our method shows that this method is near real-time, and can process about 5 images per second.
摘要:
A microfluidic device useable for performing live cell computed tomography imaging is fabricated with a cover portion including a first wafer with at least one metal patterned thereon, a base portion including a second wafer with at least one metal patterned thereon and negative photoresist defining recesses therein, and a diffusive bonding layer including a negative photoresist arranged to join the cover portion and the base portion. A composition useful in live cell computer topography includes a long-chain polysaccharide at a concentration of from about 0.01% to about 10.0% in cell culture medium for supporting cell life while enabling cell rotation rate to be slowed to a speed commensurate with low light level imaging.
摘要:
Examples disclose a method, executable by a processor, to assign a metric of vulnerability to a virtual machine. Based on the metric of vulnerability, the method places the virtual machine into a detection phase. Additionally, the examples disclose the method is to receive an alert corresponding to the virtual machine and based this received alert, the method implements a countermeasure.