Abstract:
A method of fabricating a device, comprising forming portions of electronic circuitry and a shadow wall structure over a substrate, and subsequently depositing a conducting layer over the substrate by angled deposition of a conducting material in at least a first deposition direction at an acute angle relative to the plane of the substrate. The shadow wall structure is arranged to cast a shadow in the deposition, leaving areas where the conducting material is not deposited. The shadow wall structure comprises one or more gaps each shorter than a shadow length of a respective part of the shadow wall structure casting the shadow into the gap, to prevent the conducting material forming in the gaps and to thereby create regions of said upper conducting layer that are electrically isolated from one another. These are arranged to form conducting elements for applying signals to, and/or receiving signals from, the electronic circuitry.
Abstract:
A compact, balanced, up to three degrees of freedom measuring interferometer having dual beam splitters rotated ninety degrees with respect to each other and a measurement detector including a quadrant detector or multi-core fiber with four detectors which enables fiber delivery of an optical source without periodic error, an interferometer system, and method for using is disclosed.
Abstract:
The invention provides a process for depositing a coating onto particles being pneumatically transported in a tube. The process comprising the steps of providing a tube having an inlet opening and an outlet opening; feeding a carrier gas entraining particles into the tube at or near the inlet opening of the tube to create a particle flow through the tube; and injecting a first self-terminating reactant into the tube via at least one injection point downstream from the inlet opening of the tube for reaction with the particles in the particle flow. The process is suitable for atomic layer deposition and molecular layer deposition. An apparatus for carrying out the process is also disclosed.
Abstract:
The invention relates to a canal control system for controlling the water level or water flow in a canal system (2), comprising: (a) a centralized master controller (20), (b) a local slave controller (30), (c) a wireless communication system between the centralized master controller and the local slave controller, (d) a (fixed) reference point (8) or (movable) marker (11) relating to the water level in the canal system, and (e) an adjustable actuator (9) in the canal system, such as agate or pump, whereby the local slave controller comprises a mobile device (13) capable of displaying a human-readable instruction which an operator can act upon to set the adjustable actuator. The operator takes a picture of the water level and/or of the setting of the adjustable actuator. The data of the picture is used for updating a mathematical model of predictive control of the canal system and for calculating the setting of the present actuator and for determining which actuator is to be visited next by the operator.
Abstract:
The invention provides a process for depositing a coating onto particles being pneumatically transported in a tube. The process comprising the steps of providing a tube having an inlet opening and an outlet opening; feeding a carrier gas entraining particles into the tube at or near the inlet opening of the tube to create a particle flow through the tube; and injecting a first self-terminating reactant into the tube via at least one injection point downstream from the inlet opening of the tube for reaction with the particles in the particle flow. The process is suitable for atomic layer deposition and molecular layer deposition. An apparatus for carrying out the process is also disclosed.
Abstract:
A target-travel-path generating circuit calculates a target travel path along which the controlled object can travel in the future from the current controlled object position, an ideal-control-signal calculating circuit calculates a control profile Ŝ to travel along the target travel path P, and a difference calculating circuit calculates a difference δ between the ideal control magnitude Ŝ and a current control magnitude Ŝ. An operation system assistance controller controls the operation system based on the magnitude of the calculated difference δ to assist the control operation of the operator, the control-operation-state of the operator, the environment-state, and the required operation-precision. Accordingly, it is possible to provide the operator with control operation assistance that is a function of the magnitude of the difference δ from an ideal control state, the control-operation-state of the operator, the environment-state, and the required operation-precision, and thus, a control-operation assistance control can be outputted that is suitable for the conditions that characterize the state of the operator, the environment, and the controlled object.
Abstract:
A holder assembly comprises a first and a separable second part, the first part detachable from the second part, the first part comprising a tube and an environmental cell interface and the second part comprising an electron microscope interface, as a result of which the first part can be cleaned at high temperatures without exposing the second part to said high temperature.By forming the holder assembly from detachable parts, one part can be cleaned by heating it to a high temperature of, for example, 1000° C., clogging in the tubes can be removed by reduction of carbon, while keeping the other part (often comprising mechanical fittings, ball bearing, sliders, or such like) cool. The cleaning can be enhanced by blowing, for example, oxygen or hydrogen through the tubes.
Abstract:
A target-travel-path generating circuit calculates a target travel path along which the controlled object can travel in the future from the current controlled object position, an ideal-control-signal calculating circuit calculates a control profile Ŝ to travel along the target travel path P, and a difference calculating circuit calculates a difference δ between the ideal control magnitude Ŝ and a current control magnitude Ŝ. An operation system assistance controller controls the operation system based on the magnitude of the calculated difference δ to assist the control operation of the operator, the control-operation-state of the operator, the environment-state, and the required operation-precision. Accordingly, it is possible to provide the operator with control operation assistance that is a function of the magnitude of the difference δ from an ideal control state, the control-operation-state of the operator, the environment-state, and the required operation-precision, and thus, a control-operation assistance control can be outputted that is suitable for the conditions that characterize the state of the operator, the environment, and the controlled object.
Abstract:
A compact, balanced, up to three degrees of freedom measuring interferometer which enables fiber delivery of an optical source without periodic nonlinearity, an interferometer system, and method for using an interferometer to measure up to three degrees of freedom is disclosed.
Abstract:
A target-travel-path generating circuit calculates a target travel path along which a controlled object can travel in the future from a current controlled object position. An ideal-control-signal calculating circuit calculates a control profile to travel along the target travel path, and a difference calculating circuit calculates a difference between an ideal control magnitude and a current control magnitude. A controller controls an operation system based on a magnitude of the difference to assist a control operation and a control-operation-state of an operator, an environment-state, and a required operation-precision. The operator receives assistance corresponding to the magnitude of the difference from an ideal control state, the control-operation-state, the environment-state, and the required operation-precision. An outputted control-operation assistance control is suitable for conditions that characterize the operator state, the environment, and the controlled object.