Abstract:
The invention provides a process for depositing a coating onto particles being pneumatically transported in a tube. The process comprising the steps of providing a tube having an inlet opening and an outlet opening; feeding a carrier gas entraining particles into the tube at or near the inlet opening of the tube to create a particle flow through the tube; and injecting a first self-terminating reactant into the tube via at least one injection point downstream from the inlet opening of the tube for reaction with the particles in the particle flow. The process is suitable for atomic layer deposition and molecular layer deposition. An apparatus for carrying out the process is also disclosed.
Abstract:
The invention relates to a canal control system for controlling the water level or water flow in a canal system (2), comprising: (a) a centralized master controller (20), (b) a local slave controller (30), (c) a wireless communication system between the centralized master controller and the local slave controller, (d) a (fixed) reference point (8) or (movable) marker (11) relating to the water level in the canal system, and (e) an adjustable actuator (9) in the canal system, such as agate or pump, whereby the local slave controller comprises a mobile device (13) capable of displaying a human-readable instruction which an operator can act upon to set the adjustable actuator. The operator takes a picture of the water level and/or of the setting of the adjustable actuator. The data of the picture is used for updating a mathematical model of predictive control of the canal system and for calculating the setting of the present actuator and for determining which actuator is to be visited next by the operator.
Abstract:
An example device includes a processor configured to receive a plurality of voltage measurements corresponding to nodes in a distribution network, and determine, for each respective node: a value of a first coefficient, based on a previous value of the first coefficient, a minimum voltage value for the node, and a voltage measurement that corresponds to the node, and a value of a second coefficient based on a previous value of the second coefficient, a maximum voltage value for the node, and the voltage measurement. The processor of the example device is also configured to cause an inverter-interfaced energy resource connected to the distribution network to modify its output power based on the value of the first coefficient for each node and the value of the second coefficient for each node.
Abstract:
A holder assembly comprises a first and a separable second part, the first part detachable from the second part, the first part comprising a tube and an environmental cell interface and the second part comprising an electron microscope interface, as a result of which the first part can be cleaned at high temperatures without exposing the second part to said high temperature.By forming the holder assembly from detachable parts, one part can be cleaned by heating it to a high temperature of, for example, 1000° C., clogging in the tubes can be removed by reduction of carbon, while keeping the other part (often comprising mechanical fittings, ball bearing, sliders, or such like) cool. The cleaning can be enhanced by blowing, for example, oxygen or hydrogen through the tubes.
Abstract:
A holder assembly comprises a first and a separable second part, the first part detachable from the second part, the first part comprising a tube and an environmental cell interface and the second part comprising an electron microscope interface, as a result of which the first part can be cleaned at high temperatures without exposing the second part to said high temperature.By forming the holder assembly from detachable parts, one part can be cleaned by heating it to a high temperature of, for example, 1000° C., clogging in the tubes can be removed by reduction of carbon, while keeping the other part (often comprising mechanical fittings, ball bearing, sliders, or such like) cool. The cleaning can be enhanced by blowing, for example, oxygen or hydrogen through the tubes.
Abstract:
A method of fabricating a device, comprising forming portions of electronic circuitry and a shadow wall structure over a substrate, and subsequently depositing a conducting layer over the substrate by angled deposition of a conducting material in at least a first deposition direction at an acute angle relative to the plane of the substrate. The shadow wall structure is arranged to cast a shadow in the deposition, leaving areas where the conducting material is not deposited. The shadow wall structure comprises one or more gaps each shorter than a shadow length of a respective part of the shadow wall structure casting the shadow into the gap, to prevent the conducting material forming in the gaps and to thereby create regions of said upper conducting layer that are electrically isolated from one another. These are arranged to form conducting elements for applying signals to, and/or receiving signals from, the electronic circuitry.
Abstract:
An example device includes a processor configured to receive a plurality of voltage measurements corresponding to nodes in a distribution network, and determine, for each respective node: a value of a first coefficient, based on a previous value of the first coefficient, a minimum voltage value for the node, and a voltage measurement that corresponds to the node, and a value of a second coefficient based on a previous value of the second coefficient, a maximum voltage value for the node, and the voltage measurement. The processor of the example device is also configured to cause an inverter-interfaced energy resource connected to the distribution network to modify its output power based on the value of the first coefficient for each node and the value of the second coefficient for each node.
Abstract:
A method of dynamically allocating frequency settings of a transit service includes utilizing AVL/APC to determine travel time and demand variations within a day. Clusters of time periods are formed based thereon and the day is split up. For each of the time periods for which a new frequency setting will be allocated, frequency allocation ranges are computed within which waiting times at multi-modal transfer stops are reduced and a frequency allocation is selected using criteria including passenger demand coverage and operational costs reduction. A plurality of frequency setting solutions are computed using a Branch and Bound approach with Sequential Quadratic Programming (SQP) or a sequential genetic algorithm with exterior point penalization. Sensitivity of the frequency setting solutions is tested to determine a most operationally reliable frequency setting solution for the new frequency setting and a timetable of the transit service is updated accordingly.
Abstract:
A process and a system for producing a stock solution for production of a ferrofluid is provided. The process includes contacting an acidic solution in a reaction container filled with an excess of a bulk material containing Fe(III) and optionally Fe(II). The acid reacts with the bulk material to form the stock solution (Ls) having dissolved ferric (Fe(III)) and optionally ferrous (Fe(II)) ions which is then separated from the bulk material.
Abstract:
A process and a system for producing a stock solution for production of a ferrofluid is provided. The process includes contacting an acidic solution in a reaction container filled with an excess of a bulk material containing Fe(III) and optionally Fe(II). The acid reacts with the bulk material to form the stock solution (Ls) having dissolved ferric (Fe(III)) and optionally ferrous (Fe(II)) ions which is then separated from the bulk material.