Abstract:
An electronic device is provided. The electronic device includes a substrate, a plurality of electrodes, a soldering material and a plurality of pins. The electrodes are formed in the substrate. The soldering material is disposed on the electrodes. The pins contact the soldering material and electrically connect to the electrodes, wherein at least one of the pins includes a post and a base. The post has a fixing end. The base is disposed on the fixing end of the post, wherein a plurality of openings are formed on the base, passing through the base along an axis, and the axis is parallel to the post.
Abstract:
A fuel cell MEA with a border packaging structure. A catalyst coated membrane includes an anode catalyst layer, a cathode catalyst layer, and a proton exchange membrane disposed therebetween. An anode border packaging member is connected between the anode catalyst layer and an anode gas diffusion layer. A cathode border packaging member is connected between the cathode catalyst layer and a cathode gas diffusion layer and adheres to the anode border packaging member at outer edges of the catalyst coated membrane. The anode border packaging member and the cathode border packaging member respectively include two adhesive layers and a substrate layer formed therebetween. The anode border packaging member and the cathode border packaging member are respectively connected between the anode catalyst layer and the anode gas diffusion layer and between the cathode catalyst layer and the cathode gas diffusion layer by the adhesive layers.
Abstract:
A fuel cell includes a first mono-sided channel plate, at least one double-sided channel plate, a second mono-sided channel plate, a plurality of membrane electrode assemblies, and a plurality of rigid hydrophilic gaskets. The double-sided channel plate includes a first side channel and a second side channel. The membrane electrode assemblies are respectively disposed between the first mono-sided channel plate and the double-sided channel plate and between the double-sided channel plate and the second mono-sided channel plate. The rigid hydrophilic gaskets are respectively abutted between the first mono-sided channel plate and one of the membrane electrode assemblies, between one of the membrane electrode assemblies and the first side channel of the double-sided channel plate, between the second side channel of the double-sided channel plate and one of the membrane electrode assemblies, and between one of the membrane electrode assemblies and the second mono-sided channel plate.
Abstract:
The invention provides a printed circuit board and method for fabricating the same. The printed circuit board includes a substrate having an internal circuit structure. An additional circuit structure is disposed on the substrate, electrically connected to the internal circuit structure. A solder mask insulating layer having an opening is disposed on the additional circuit structure. A conductive bump pattern is disposed in the solder mask insulating layer, wherein the conductive bump pattern extends into the opening horizontally, wherein a side, a portion of an upper surface and a portion of a lower surface of the conductive bump pattern are exposed from the opening from the opening. A solder ball is formed in the opening, wherein the solder ball is electrically connected to the additional circuit structure.
Abstract:
The invention provides a fuel cell module. The fuel cell module includes a membrane electrode assembly, a flow field plate and a current collector. The current collector, disposed between the membrane electrode assembly and the flow field plate, includes a first surface, a second surface and a plurality of openings. The first surface faces the membrane electrode assembly. The second surface is opposite to the first surface and faces the flow field plate. Each of the openings has an inner wall, and an acute angle is formed between the inner wall and the first surface. Additionally, each opening has a first diameter level with the first surface and a second diameter level with the second surface, wherein the first diameter is smaller than the second diameter.
Abstract:
A pressure control system in provided, including a pressure regulating valve, a throttle valve and a relief valve. The pressure regulating valve includes a valve body and a piston assembly. The valve body has a chamber, wherein the chamber has an inlet and an outlet. The piston assembly, movably disposed in the chamber, includes a first piston and a second piston. The first piston corresponds to the inlet and has a first contact surface. The second piston corresponds to the outlet and has a second contact surface. The first piston and the second piston move simultaneously, and the first contact surface is smaller than the second contact surface. The throttle valve, connected with the pressure regulating valve, is disposed at a side of the outlet of the valve body. The relief valve, connected with the pressure regulating valve, is disposed at a side of the inlet of the valve body.
Abstract:
Battery management systems and methods are provided. The system includes an electronic device and a fuel cell module. The electronic device includes a processing module, a first power adapter, a first communication interface, and a rechargeable battery. The fuel cell module includes a second power adapter connected with the first power adapter, a second communication interface connected with the first communication interface, at least one fuel cell, and a control unit. The control unit receives a first status of the rechargeable battery from the electronic device via the processing module, the first communication interface and the second communication interface, and determines whether to charge the rechargeable battery using the fuel cell via the second power adapter and the first power adapter according to the first status.
Abstract:
A cutting mold for removing two opposite superfluous rigid circuit boards from a rigid-flexible circuit board. A first cutter is connected to a first moldboard. A first barricade is connected to the first moldboard. The maximum vertical distance from the first barricade to the first moldboard exceeds that from the first cutter to the first moldboard. A second moldboard is opposite the first moldboard. The first and second moldboards move with respect to each other. A second cutter is connected to the second moldboard and corresponds to the first cutter. A second barricade is connected to the second moldboard and detachably abuts the first barricade. The maximum vertical distance from the second barricade to the second moldboard exceeds that from the second cutter to the second moldboard. The first and second cutters cut the superfluous rigid circuit boards when the first and second moldboards move toward each other.
Abstract:
A pin for a semiconductor device is disclosed. A connection head includes a plurality of curved protruded ribs and a plurality of recessed grooves. The curved protruded ribs and recessed grooves are alternately arranged. The curved protruded ribs radially extend from the center of the connection head. A pin stem is connected to the connection head.
Abstract:
Disclosed is a printed circuit board structure which is manufactured by providing a core board, forming an inner circuit layer on the core board surface, forming a bonding pad on the inner circuit, forming a ring-shaped anti-etching layer on the bonding pad, forming an anti-soldering insulation layer on the ring-shaped anti-etching layer and the bonding pad, and forming an opening to expose a part of the bonding pad, wherein the radius of the opening is shorter than the radius of the ring-shaped anti-etching layer, and the bonding pad surface is free of concave. The described structure may prevent the solder extending along the bottom void of the anti-soldering insulation layer to other regions.