Abstract:
A front-side conductive paste for a crystalline silicon solar cell chip is provided. The front-side conductive paste for a crystalline silicon solar cell chip includes, in parts by weight, 80.0-93.0 parts of a metal powder, 6.0-15.0 parts of an organic carrier, and 1.0-5.0 parts of an oxide etching agent. The oxide etching agent contains at least 10-40% of MgO, 0.1-5% of PbO, and 5-30% of Li2O based on 100% by mole, with the molar ratio of MgO:PbO being 10:5˜40:0.1, and the mole ratio of MgO:Li2O being 10:30˜40:5. The metal powder forms good ohmic contact with crystalline silicon substrate during the sintering process of the front-side conductive paste applied overlying an insulation film on the substrate. Finally, a front-side electrode of low contact resistance, good electrical conductivity, and strong adhesion is obtained.
Abstract:
An epoxy conductive paste is disclosed, based on 100 parts by total mass, comprising the following raw material components: 30˜81 parts of conductive particles, 16˜30 parts of epoxy, 0.2˜3 parts of acrylic, 1˜15 parts of reactive diluent, 1˜15 parts of toughening agent, 0.4˜5 parts of silane coupling agent, and 0.4˜5 parts of cationic curing agent; wherein, the conductive particles include conductive particles with a three-dimensional dendritic microstructure. The conductive paste of the disclosure has the characteristics of good conductivity, short curing time, strong adhesion, and capability for long-term operation at room temperature.
Abstract:
An epoxy conductive paste is disclosed, based on 100 parts by total mass, comprising the following raw material components: 30˜81 parts of conductive particles, 16˜30 parts of epoxy, 0.2˜3 parts of acrylic, 1˜15 parts of reactive diluent, 1˜15 parts of toughening agent, 0.4˜5 parts of silane coupling agent, and 0.4˜5 parts of cationic curing agent; wherein, the conductive particles include conductive particles with a three-dimensional dendritic microstructure. The conductive paste of the disclosure has the characteristics of good conductivity, short curing time, strong adhesion, and capability for long-term operation at room temperature.
Abstract:
A modified epoxy acrylic resin conductive adhesive is disclosed, based on 100 parts by total mass, including the following components: 49-75 parts of conductive particles, 24-45 parts of modified epoxy propylene resin, 0.5-2.5 parts of silane coupling agent, and 0.5-3.0 parts of initiator. The conductive particles include at least 5% conductive particles with a three-dimensional dendritic microstructure among all the conductive particles. A preparation method and application of the modified epoxy acrylic resin conductive adhesive are disclosed. The modified epoxy acrylic resin conductive adhesive of the present disclosure has advantages in good electrical conductivity, short curing time, strong adhesion, and capability being used for a long-time room temperature operation.
Abstract:
The present invention provides a method for manufacturing a front electrode of a semiconductor device. The method includes using an electrically conductive paste composed of a glass-free corrosion binder, a metallic powder and an organic carrier. The corrosion binder is one or more Pb—Te based crystalline compounds having a fixed melting temperature in a range of 440° C. to 760° C. During a sintering process of the electrically conductive paste for forming an electrode, the glass-free corrosion binder is converted into a liquid for easily corroding and penetrating an antireflective insulating layer on a front side of the solar cell, so that a good ohmic contact is formed. At the same time, the electrically conductive metallic powder is wetted, and the combination of the metallic powder is promoted. As a result, a high-conductivity front electrode of a crystalline silicon solar cell is formed.
Abstract:
An acrylic conductive paste is provided, based on 100 parts by weight, including: 30-84 parts of conductive particles, 15˜45 parts of acrylate, 0.5˜2.5 parts of adhesion promoter, 0.5˜3 parts of initiator. The conductive particles include three-dimensional dendritic conductive particles; and the adhesion promoter is a mixture of a silane coupling agent and a phosphate ester. The conductive paste of the present disclosure has good electrical conductivity, short curing time, strong adhesion, and can be used for a long-time room temperature operation. The present disclosure also provides a method for preparing the above-mentioned acrylic conductive paste, which is convenient for operation and industrial application; at the same time, it shows that the acrylic conductive paste of the present disclosure can be applied to semiconductor components for packaging a semiconductor device.
Abstract:
A front-side conductive paste for a crystalline silicon solar cell chip is provided. The front-side conductive paste for a crystalline silicon solar cell chip includes, in parts by weight, 80.0-93.0 parts of a metal powder, 6.0-15.0 parts of an organic carrier, and 1.0-5.0 parts of an oxide etching agent. The oxide etching agent contains at least 10-40% of MgO, 0.1-5% of PbO, and 5-30% of Li2O based on 100% by mole, with the molar ratio of MgO:PbO being 10:5˜40:0.1, and the mole ratio of MgO:Li2O being 10:30˜40:5. The metal powder forms good ohmic contact with crystalline silicon substrate during the sintering process of the front-side conductive paste applied overlying an insulation film on the substrate. Finally, a front-side electrode of low contact resistance, good electrical conductivity, and strong adhesion is obtained.