Abstract:
A gas atomization apparatus is disclosed for producing high purity fine refractory compound powders. After the system reaches high vacuum, a first stage inert atomizing gas breaks superheated metal melt into droplets and a second stage reactive atomizing gas breaks the droplets further into ultrafine droplets while reacts with them to form refractory compound powders. The first stage atomizing gas is inert gas able to break up melt into droplets and prevent crust formation on the nozzle front. A reaction time enhancer is arranged at bottom of reaction chamber to furnish a reactive gas flow in a reverse direction of the falling droplets and powders. Under the reverse gas flow, the falling droplets and powders change moving direction and travel longer distance in reaction chamber to increase reaction time. This apparatus can produce refractory powders with ultrahigh purity and uniform powder size while maintain high process energy efficiency.
Abstract:
A metal oxide composite particle is produced by hydrolyzing and condensing a hydrolysable metal compound in a solvent and in the presence of an inorganic particle and/or an organic particle to form a metal oxide sol, and subjecting the obtained sol to drying, heating and crushing processes.
Abstract:
Reactions between solid materials to form useful products, for example, strontium ferrites, are effected by heating a primary solid feed material with a plasma gas stream to melt the primary feed material and then contacting a secondary solid feed material with the molten primary feed material and the plasma gas stream to melt the secondary feed material and enable reaction among the reactants to occur. The method of the invention simplifies the effecting of solid-solid reactions using plasma gas streams and permits the use of impure materials as the secondary feed material, strontium carbonate or strontium oxide and ferric oxide (hematite), so as to form a strontium ferrite.
Abstract:
The present invention is directed to a method of making metal oxide and mixed metal oxide particles. The method includes treating a mixture formed from a metal source, such as metal alkoxide, a surfactant, and a first alcohol in an aqueous media at a very high metal oxide yield. The mixture is reacted using a catalyst to form metal oxide particles having a desired particle size in said mixture. By washing the particles with an aprotic solvent, the residual carbon content of the particles can be significantly reduced. The method is particularly suitable for forming silica particles. The metal oxide particles can then be heat treated to form synthetic fused metal oxides such as, for example, synthetic fused silica.
Abstract:
A process for preparing a mesoporous metal oxide, i.e., transition metal oxide, Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.
Abstract:
A process is provided for the synthesis for metal oxides of high specific surface area and high porosity which are particularly useful as catalyst supports. The process comprises forming a mixture of a salt of at least one metal and a molten salt medium comprising at least one alkali metal salt having an oxidizing effect, maintaining this mixture at the reaction temperature for the time necessary to convert the salt to oxide and thereafter isolating the metal oxide formed.
Abstract:
The present invention is directed to a method of making metal oxide and mixed metal oxide particles. The method includes treating a mixture formed from a metal source, such as metal alkoxide, a surfactant, and a first alcohol in an aqueous media at a very high metal oxide yield. The mixture is reacted using a catalyst to form metal oxide particles having a desired particle size in said mixture. By washing the particles with an aprotic solvent, the residual carbon content of the particles can be significantly reduced. The method is particularly suitable for forming silica particles. The metal oxide particles can then be heat treated to form synthetic fused metal oxides such as, for example, synthetic fused silica.
Abstract:
A process for producing a dispersion containing metal oxide nanoparticles in a liquid phase, wherein the process comprises the following steps: (a) atomization of a metal melt to give a metallic powder, (b) optionally deformation of the metallic powder obtained in step (a), (c) oxidation of the metallic powder obtained in step (a) or (b) to give a metal oxide powder, (d) comminution of the metal oxide powder obtained in step (c) in the presence of a liquid phase to give a dispersion whose metal oxide particles have a particle size d90,oxide of less than 300 nm. The invention further relates to a dispersion which can be obtained by the process of the invention.