摘要:
The invention relates to a method for upgrading heavy liquid fractions resulting from oil refining, by combustion in a fluidized-bed chemical looping process. The method according to the invention allows energy to be produced by oxidizing totally the heavy liquid feeds while allowing direct capture of the CO2 emitted in the combustion fumes. The method according to the invention also allows a synthesis gas to be produced.
摘要:
Provided is a hydrogen production apparatus enabling reduction of energy needed for separation and collection of CO2 in the hydrogen production. The hydrogen production apparatus includes a reformer, a heating device heating the reformer, a transformer, a hydrogen separation device separating and taking out hydrogen from transformed gas, a CO2 separation device separating and taking out CO2 from off-gas from which hydrogen was separated by the hydrogen separation device, a heat collecting device collecting heat of the reformed gas, heat of the transformed gas, and waste heat from the heating device, and a heat medium supply device supplying the heat medium having absorbed heat collected by the heat collecting device to the CO2 separation device. The absorption liquid having absorbed CO2 in off-gas is heated by the heat medium heated with collected heat, thereby releasing CO2.
摘要:
Provided is a hydrogen production apparatus enabling reduction of energy needed for separation and collection of CO2 in the hydrogen production. The hydrogen production apparatus includes a reformer, a heating device heating the reformer, a transformer, a hydrogen separation device separating and taking out hydrogen from transformed gas, a CO2 separation device separating and taking out CO2 from off-gas from which hydrogen was separated by the hydrogen separation device, a heat collecting device collecting heat of the reformed gas, heat of the transformed gas, and waste heat from the heating device, and a heat medium supply device supplying the heat medium having absorbed heat collected by the heat collecting device to the CO2 separation device. The absorption liquid having absorbed CO2 in off-gas is heated by the heat medium heated with collected heat, thereby releasing CO2.
摘要:
An integrated gasification combined cycle system. In one embodiment (FIG. 2) a system (200) includes an ion transport membrane air separation unit (210) for producing oxygen-enriched gas (209) and oxygen-depleted air (227), a gasification system (5) for generating syngas with the oxygen-enriched gas (209), a gas combustor (234) for reacting the syngas (224), and a subsystem configured to provide a first stream of air to the combustor (234) at a first pressure and to provide a second stream of air to the air separation unit (210) at a second pressure greater than the first pressure. The subsystem includes a compressor (230) having multi-pressure outlets (203, 204).
摘要:
Isothermal catalytic reactor (1) comprising a catalytic bed (2) and a tubular heat exchanger immersed in said catalytic bed, wherein the exchanger is formed by straight tubes connected to a distributor (6) and to a header (7) formed by preferably toroidal bodies which support the said tubes, and wherein the catalytic bed is of the type crossed by an inward radial flow.
摘要:
The present invention is directed to a process for the production of hydrocarbon product from two different hydrocarbonaceous feedstocks comprising the steps of preparing a feed syngas having a hydrogen/carbon monoxide [H2/CO] molar feed ratio suitable for Fischer-Tropsch synthesis, wherein the feed syngas is prepared by combining a first syngas having a H2/CO molar ratio below the molar feed ratio and a second syngas having a H2/CO molar ratio above the molar feed ratio; the first syngas is prepared from a liquid hydrocarbon comprising feedstock as the sole source of carbon in a first syngas manufacturing process comprising a non-catalytic partial oxidation step; the second syngas is prepared from a methane comprising feedstock as the sole source of carbon in a second syngas manufacturing process comprising a heat exchange reforming step and an auto-thermal reforming step; and the first and second syngas manufacturing processes are operated in parallel.
摘要:
A fuel cell system includes a gas generation device for the catalytic steam reforming of a steam/fuel mixture and/or for the partial oxidation of an oxygen/fuel mixture for generating a hydrogen-rich medium and a gas cleaning stage for removing carbon monoxide from the product gas of the gas generation device using selective CO oxidation. A principal flow path of the medium is split at least over a certain length into a first and a second parallel flow path and is then brought together again. A flow-diverting means is provided at least in the first flow path in order to open or block the first flow path in a temperature-dependent manner.
摘要:
An integrated gasification combined cycle system. In one embodiment (FIG. 2) a system (200) includes an ion transport membrane air separation unit (210) for producing oxygen-enriched gas (209) and oxygen-depleted air (227), a gasification system (5) for generating syngas with the oxygen-enriched gas (209), a gas combustor (234) for reacting the syngas (224), and a subsystem configured to provide a first stream of air to the combustor (234) at a first pressure and to provide a second stream of air to the air separation unit (210) at a second pressure greater than the first pressure. The subsystem includes a compressor (230) having multi-pressure outlets (203, 204).
摘要:
The invention relates to a method for chemical-looping redox combustion on an active mass including a binder, in form of a fluidized-bed catalytic cracking catalyst containing silica and alumina, and a metal oxide active phase. The active mass is obtained by impregnating metal salts on a new or used catalytic cracking catalyst. Advantageously, the invention applies to the sphere of CO2 capture.
摘要:
An integrated gasification combined cycle system. In one embodiment (FIG. 2) a system (200) includes an ion transport membrane air separation unit (210) for producing oxygen-enriched gas (209) and oxygen-depleted air (227), a gasification system (5) for generating syngas with the oxygen-enriched gas (209), a gas combustor (234) for reacting the syngas (224), and a subsystem configured to provide a first stream of air to the combustor (234) at a first pressure and to provide a second stream of air to the air separation unit (210) at a second pressure greater than the first pressure. The subsystem includes a compressor (230) having multi-pressure outlets (203, 204).