Abstract:
Disclosed is a method of preparing a bio-based thermosetting foam material with improved properties, in particular improved flame retardant properties, which method includes the steps of a) producing a prepolymer by condensation of at least one phenolic compound and formaldehyde in a ratio of 1:1.0 to 3.0 using 0.15 to 5 wt % of an alkaline catalyst in the temperature range of 50 to 100° C. until the refractive index of the reaction mixture is 1.4990 to 1.5020, b) adding 2 to 40 wt % of at least one natural polyphenol at a temperature of 50 to 100° C., c) adding 2 to 10 wt % of one or more emulsifiers and mixtures thereof, d) adding 2 to 10 wt % of one or more foaming agents and mixtures thereof and e) adding 10 to 20 wt % of a curing agent and f) curing. All wt % being related to the amount of the raw materials used.
Abstract:
The invention is a solution of highly advanced phenolic resin with improved inherent foamability that is made from the reaction of phenol, aldehyde, water and alkali the improved foamability being brought about by the incorporation of up to 1.0% by weight, anhydrous basis, lime (calcium hydroxide) into the early stages of the reaction mix. In another embodiment, the invention is a plywood glue composition comprising a solution of lime-containing highly advanced phenolic resin, dried animal blood and preferably an aldehyde glue viscosity-lowering agent.
Abstract:
The object is to provide a resin composition for a printed circuit board capable of realizing a printed circuit board that not only has heat resistance and flame retardancy but also is excellent in heat resistance after moisture absorption. The resin composition is a resin composition for a printed circuit board containing a cyanate ester compound (A) obtained by cyanation of a naphthol-dihydroxynaphthalene aralkyl resin or a dihydroxynaphthalene aralkyl resin, and an epoxy resin (B).
Abstract:
Disclosed is a method of preparing a bio-based thermosetting foam material with improved properties, in particular improved flame retardant properties, which method includes the steps of a) producing a prepolymer by condensation of at least one phenolic compound and formaldehyde in a ratio of 1:1.0 to 3.0 using 0.15 to 5 wt % of an alkaline catalyst in the temperature range of 50 to 100° C. until the refractive index of the reaction mixture is 1.4990 to 1.5020, b) adding 2 to 40 wt % of at least one natural polyphenol at a temperature of 50 to 100° C., c) adding 2 to 10 wt % of one or more emulsifiers and mixtures thereof, d) adding 2 to 10 wt % of one or more foaming agents and mixtures thereof and e) adding 10 to 20 wt % of a curing agent and f) curing. All wt % being related to the amount of the raw materials used.
Abstract:
A method of reducing the formaldehyde emission of a mineral fibre product bonded with a urea-modified phenol-formaldehyde resol resin-type binder comprises the step of adding dextrose to the binder composition during and/or after preparation of the binder composition but before curing of the binder composition applied to the mineral fibres.
Abstract:
The present invention relates to a method for producing a cured product of a thermosetting resin composition, the method including: heating a thermosetting resin composition including the following ingredients (A) to (C) at a temperature of 100 to 200° C. for 1 to 60 minutes; and then further heating the thermosetting resin composition at a temperature of 220 to 350° C. for 10 to 6,000 minutes, thereby curing the thermosetting resin composition: (A) an allyletherified phenol resin; (B) an epoxy resin; and (C) a curing accelerator.
Abstract:
The present invention relates to a method for producing a cured product of a thermosetting resin composition, the method including: heating a thermosetting resin composition including the following ingredients (A) to (C) at a temperature of 100 to 200° C. for 1 to 60 minutes; and then further heating the thermosetting resin composition at a temperature of 220 to 350° C. for 10 to 6,000 minutes, thereby curing the thermosetting resin composition: (A) an allylated phenol resin; (B) an epoxy resin; and (C) a curing accelerator.
Abstract:
A fiber-reinforced resin plate comprising a fibrous base material and a matrix bonding the fibers contained in the fibrous base material, the matrix being formed by curing a resin composition comprising a highly reactive modified phenolic resin (A) prepared by polycondensing a petroleum heavy oil or pitch, a formaldehyde polymer and a phenol in the presence of an acid catalyst to thereby prepare a modified phenolic resin and-reacting the resultant modified phenolic resin with a phenol in the presence of an acid catalyst to thereby lower the molecular weight of the modified phenolic resin, and an epoxy resin (B). Also, a prepreg and a process for producing the fiber-reinforced resin plate. This fiber-reinforced resin plate is excellent not only in adhesion to copper and other metals, heat resistance and electrical insulating properties but also in dimensional stability, strength and other mechanical properties, especially those at heating, because of the formation of the matrix by curing of the above resin composition comprising the highly reactive modified phenolic resin (A) and the epoxy resin (B).
Abstract:
Rheologically stable aqueous dispersions of metal-modified novolak resin particles are prepared by grinding an aqueous mixture of the metal-modified novolak resin and anionic polymeric dispersing agent in the presence of a small amount of an organo-phosphorus compound containing two or more phosphonic acid or alkali metal phosphonate groups per molecule. Dispersions of the metal-modified resin particles so produced may be incorporated in color developing coating compositions containing a binder which may be applied and dried on a carrier paper to produce a pressure-sensitive record sheet.
Abstract:
The embodiments relate to a polymerisable thermoset composition having improved flame retardant properties, a polymerised thermoset having improved flame retardant properties, a process for manufacturing the polymerised thermoset, and use of the polymerisable thermoset composition to produce lightweight construction components, preferably carbon fibre composites (CFRP), and a lightweight construction component, preferably carbon fibre composite (CFRP), containing the polymerised thermoset.