摘要:
A butanol expression cassette includes a butanol production related genes and a fermentation regulatory element. The fermentation regulatory element controls the expression of the butanol production related gene and locates upstream of the butanol production related gene. The fermentation regulatory element includes a promoter, a ribosome binding site and a transcription factor binding site of a fermentation gene. A fermentation in which the fermentation regulatory element involves includes an acetic acid fermentation, an alcohol fermentation, a succinic acid fermentation or a lactic acid fermentation, the butanol production related gene is not the fermentation gene or a gene of an upstream product of the fermentation in which the fermentation gene involves. The present invention provides a recombinant plasmid formed by cloning the butanol expression cassettes in the expression vector. The present invention also provides a butanol production related gene expression method to express butanol production related gene by using recombinant plasmid.
摘要:
Among the various aspects of the present disclosure is the provision of a genetically engineered transgenic microorganisms Rhodopseudomonas palustris and methods of making and using the same.
摘要:
Microorganisms and methods of producing n-butyraldehyde with enhanced yields are presented in which a microorganism is engineered to enhance the conversion of a carbon source into n-butyraldehyde. The n-butyraldehyde is recovered by way of a gas stripping process that occurs during the conversion process, providing significantly greater product yield than post-fermentation recovery of n-butyraldehyde alone.
摘要:
Microorganisms and methods of producing n-butyraldehyde with enhanced yields are presented in which a microorganism is engineered to enhance the conversion of a carbon source into n-butyraldehyde. The n-butyraldehyde is recovered by way of a gas stripping process that occurs during the conversion process, providing significantly greater product yield than post-fermentation recovery of n-butyraldehyde alone.
摘要:
The present disclosure provides optimized recombinant cells for the production of n-butanol. Methods for the use of these cells are also provided. Specifically, the utility of acylating aldehyde dehydrogenases and pyruvate:flavodoxin/ferredoxin-oxidoreductase for the improvement of n-butanol yields from recombinant cells is disclosed.
摘要:
Provided herein are methods, compositions, and non-naturally occurring microbial organism for preparing compounds such as1-butanol, butyric acid, succinic acid, 1,4-butanediol, 1-pentanol, pentanoic acid, glutaric acid, 1,5-pentanediol, 1-hexanol, hexanoic acid, adipic acid, 1,6-hexanediol, 6-hydroxy hexanoic acid, ε-Caprolactone, 6-amino-hexanoic acid, ε-Caprolactam, hexamethylenediamine, linear fatty acids and linear fatty alcohols that are between 7-25 carbons long, linear alkanes and linear α-alkenes that are between 6-24 carbons long, sebacic acid and dodecanedioic acid comprising: a) converting a CN aldehyde and pyruvate to a CN+3 β-hydroxyketone intermediate through an aldol addition; and b) converting the CN+3 β-hydroxyketone intermediate to the compounds through enzymatic steps, or a combination of enzymatic and chemical steps.
摘要:
Provided herein are methods, compositions, and non-naturally occurring microbial organism for preparing compounds such as 1-butanol, butyric acid, succinic acid, 1,4-butanediol, 1-pentanol, pentanoic acid, glutaric acid, 1,5-pentanediol, 1-hexanol, hexanoic acid, adipic acid, 1,6-hexanediol, 6-hydroxy hexanoic acid, ε-Caprolactone, 6-amino-hexanoic acid, ε-Caprolactam, hexamethylenediamine, linear fatty acids and linear fatty alcohols that are between 7-25 carbons long, linear alkanes and linear α-alkenes that are between 6-24 carbons long, sebacic acid and dodecanedioic acid comprising: a) converting a CN aldehyde and pyruvate to a CN+3 β-hydroxyketone intermediate through an aldol addition; and b) converting the CN+3β-hydroxyketone intermediate to the compounds through enzymatic steps, or a combination of enzymatic and chemical steps.
摘要:
Microorganisms and methods of producing n-butyraldehyde with enhanced yields are presented in which a microorganism is engineered to enhance the conversion of a carbon source into n-butyraldehyde. The n-butyraldehyde is recovered by way of a gas stripping process that occurs during the conversion process, providing significantly greater product yield than post-fermentation recovery of n-butyraldehyde alone.