Abstract:
An impact damping mat comprises a plurality of layers arranged in a stacked formation. The stacked formation has a total thickness of no greater than 4 and 7/16 inches. The plurality of layers cooperate to provide the impact damping mat with at least one of a coefficient of restitution no greater than 30% and a selected sound reduction characteristic. The selected sound reduction characteristic can be a reduction of a maximum sound level of at least 5 dB from 40 to 63 Hz 1/3 octave bands and at least 13 dB at and above 80 Hz 1/3 octave bands normalized to a conventional ⅜ inch rollout rubber flooring product.
Abstract:
An acoustical tile including: 8 to 25 wt % mineral wool, 9 to 15 wt % starch binder, 9 to 15 wt % cellulosic fiber, wherein preferably the cellulosic fiber is newsprint, and 40 to 65 wt % perlite, wherein the weight ratio of the starch to the cellulosic fiber is 0.6 to 1.3:1; and a process for making the acoustical tile.
Abstract:
A panel for walls, ceilings, false ceilings, floor surfaces, and furnishing elements, comprising at least one continuous insulating layer of polymeric material coupled stably to at least one sheet of a material preferably selected from among wood, polymeric material, fabric, microfiber, hide and the like.
Abstract:
An enhanced, lightweight acoustic absorber is provided. The acoustic absorber is bounded by the at least one scrim layer without need for additional layers, such as melt-blown or nonwoven layers. The at least one scrim layer includes at least one non-planar, folded scrim layer bonded to itself or another scrim layer to form a plurality of air spaces between folded portions of the at least one scrim layer. The at least one scrim layer establishes a thickness of the acoustic absorber extending across opposite exposed sides of the acoustic absorber.
Abstract:
To reduce sound emission and at the same time improve stability, a multilayer board for acoustic insulation is proposed that includes, but is not limited to a core sheet arranged between a first and a second covering layer. At least one of the two covering layers is of a closed design. The core sheet is firmly connected in a planar fashion to the covering layers. The core sheet comprises slits that extend within the core sheet in the direction of the core sheet thickness, which slits reduce the shear stiffness of the board and thus ensure an improved acoustic insulation effect. On both sides the core sheet comprises continuous edge zones, which extend parallel to the covering layers. An aircraft can have an interior lining formed by panels that comprise the multilayer boards in order to provide acoustic insulation.
Abstract:
A building material configured to enhance sound attenuation and reduction in dB across a walled partition, the building material comprising a facing membrane, a core matrix disposed about the facing membrane, the core matrix comprising a plurality of microparticles and a binder solution configured to support the microparticles, the building material comprising at least a substantially exposed face, wherein a side of the core matrix is at least partially exposed to increase sound attenuation by reducing reflections from sound waves impinging on the building material as compared to a control building material lacking an exposed face. Two building materials may be used in conjunction with one another about a building structure, such as a stud wall, to create and define a sound trap that functions to reduce sound transmission across the partition formed by the stud wall and building materials.
Abstract:
A building material configured to enhance sound attenuation and reduction in dB across a walled partition, the building material comprising a facing membrane, a core matrix disposed about the facing membrane, the core matrix comprising a plurality of microparticles and a binder solution configured to support the microparticles, the building material comprising at least a substantially exposed face, wherein a side of the core matrix is at least partially exposed to increase sound attenuation by reducing reflections from sound waves impinging on the building material as compared to a control building material lacking an exposed face. Two building materials may be used in conjunction with one another about a building structure, such as a stud wall, to create and define a sound trap that functions to reduce sound transmission across the partition formed by the stud wall and building materials.
Abstract:
A composite panel has first and second sheets sandwiching a core with at least one of the sheets being attached to the core at first regions thereof and unattached to the core at second regions thereof.
Abstract:
Introduction guides 12 are provided above and below a sheet-introduction opening portion of a pressure-reduced chamber 10, and heating means 17 is provided between the introduction guides. Each resin sheet 3 is attracted and attached respectively to the circumferential surface of a corresponding emboss roller 11 by reducing pressure. Pins 112 of the emboss roller 11 are truncated cone-shaped. The ratio of the total area of the lower bases of the pins 112 to the area of the circumferential surface of the emboss roller is 0.5 or more. The rising angle θ of the pin side face, in the vertical plane including the central axis of the pins 112, is in the range from 50 degrees to 70 degrees. Furthermore, a multilayered hollow structure plate 140 is formed by attaching non-air-permeable sheets 130 onto both the front and back of a core member obtained by fusing together hollow protrusions 112 in two thermoplastic resin sheets. A sound absorbing material 150 is provided on at least one of the front and back side thereof, and small holes 114a opened in the multilayered hollow structure plate are formed in liner portions 114 and the non-air permeable sheet 130 only in the positions that matches the liner portions 114.
Abstract:
This invention describes two products both with a plain, nonperforated surface visual consisting of a fiberboard substrate with or without a laminated porous nonwoven scrim and then a finished painted surface. The finish painted surface decorates or finishes the board, but most important, must remain acoustically transparent to retain the sound absorption properties of the fiberboard prior to painting. The fiberboard substrate is made to be porous or modified with hole perforations to cause it to be a good sound absorber. If the fiberboard substrate is sufficiently porous without hole perforations, then the sprayable, high solids, porous paint can be directly applied. If hole perforations are used to improve the sound absorption properties of the board substrate, then a porous, nonwoven scrim is attached and painted using the same high solids porous paint. This painted scrim must be sufficiently optically opaque to hide the hole punched board, yet sufficiently open to render it acoustically transparent. The inventions also include the paint coating alone or the paint/scrim coating alone.