摘要:
A micro fluidic system includes a substrate, and, provided on said substrate, at least one flow path interconnecting with functional means in which liquid samples can be treated by desired procedures. The flow paths are laid out to form a pattern for the transport of liquid samples to and from said functional means. These flow paths comprise a plurality of micro posts protruding upwards from said substrate, the spacing between the micro posts being small enough to induce a capillary action in a liquid sample applied anywhere within any of said flow paths, so as to force said liquid to move from where said liquid sample was applied.
摘要:
The present invention provides a method for easily and efficiently producing cellulose beads which has narrow pore size distribution and pore structure suitable for an adsorbent and of which adsorption performance is excellent without using highly toxic and highly corrosive auxiliary raw material and without industrially disadvantageous cumbersome step. The method for producing porous cellulose beads according to the present invention is characterized in comprising (a) the step of preparing a fine cellulose dispersion by mixing a low temperature alkaline aqueous solution and cellulose, (b) the step of preparing a mixed liquid by adding a water-soluble low molecular organic compound to the fine cellulose dispersion, (c) the step of preparing an emulsion by dispersing the mixed liquid in a dispersion medium, (d) the step of contacting the emulsion with a coagulating solvent.
摘要:
A micro fluidic system includes a substrate, and, provided on said substrate, at least one flow path interconnecting with functional means in which liquid samples can be treated by desired procedures. The flow paths are laid out to form a pattern for the transport of liquid samples to and from said functional means. These flow paths comprise a plurality of micro posts protruding upwards from said substrate, the spacing between the micro posts being small enough to induce a capillary action in a liquid sample applied anywhere within any of said flow paths, so as to force said liquid to move from where said liquid sample was applied.
摘要:
Nanofluidic entropic traps, comprising alternating thin and thick regions, sieve small molecules such as DNA or protein polymers and other molecules. The thick region is comparable or substantially larger than the molecule to be separated, while the thin region is substantially smaller than the size of the molecules to be separated. Due to the molecular size dependence of the entropic trapping effect, separation of molecules may be achieved. In addition, entropic traps are used to collect, trap and control many molecules in the nanofluidic channel. A fabrication method is disclosed to provide an efficient way to make nanofluidic constrictions in any fluidic devices.
摘要:
Separation of long molecules by length is obtained by forcing such molecules to traverse a boundary between a low free-energy region and a high free-energy region. In one embodiment, the high free-energy region is a dense pillar region or other structure formed on a semiconductor substrate. One or more membranes are used in further embodiments. The low free-energy region is a larger chamber formed adjacent the high free-energy region. A recoil phase allows longer molecules not fully driven into the high free-energy region to recoil into the low free-energy region. In a further variation, the high free-energy region is a membrane having nanoscale holes.
摘要:
There is provided a process for producing beads for enantiomeric isomer resolution with a satisfactory separation efficiency. The beads for enantiomeric isomer resolution include a polysaccharide derivative, in which the polysaccharide derivative has a structure crosslinked at the 6-position hydroxy group of constituent units of the polysaccharide with a crosslinking agent. The process for producing the beads for enantiomeric isomer resolution includes: the step of adding dropwise an organic solvent solution of the polysaccharide derivative to a coagulation bath being stirred to thereby produce beads; the step of taking out the beads and then optionally drying the same after washing; and the step of reacting the beads with a crosslinking agent in an organic solvent to react at least part of the 6-position hydroxy groups in the constituent units of the polysaccharide with the crosslinking agent, thereby obtaining a reaction mixture containing beads having a crosslinked structure.
摘要:
A high separation efficiency column 10 for chromatography and a manufacturing method thereof are provided. The column 10 for chromatography includes a first substrate 11 having a plurality of pillars 22 formed on one surface thereof and a second substrate 12 bonded to the one surface of the first substrate 11 and constituting a flow path 13 together with the plurality of pillars 22 formed on the first substrate. At least a surface of each pillar is formed in a porous shape.
摘要:
Nanofluidic entropic traps, comprising alternating thin and thick regions, sieve small molecules such as DNA or protein polymers and other molecules. The thick region is comparable or substantially larger than the molecule to be separated, while the thin region is substantially smaller than the size of the molecules to be separated. Due to the molecular size dependence of the entropic trapping effect, separation of molecules may be achieved. In addition, entropic traps are used to collect, trap and control many molecules in the nanofluidic channel. A fabrication method is disclosed to provide an efficient way to make nanofluidic constrictions in any fluidic devices.
摘要:
The invention provides extraction columns for the purification of an analyte (e.g., a biological macromolecule, such as a peptide, protein or nucleic acid) from a sample solution, as well as methods for making and using such columns. The columns typically include a bed of extraction media positioned in the column between two frits. In some embodiments, the extraction columns employ modified pipette tips as column bodies. In some embodiments, the invention provides methods characterized by the elution of analyte in a small volume of liquid.
摘要:
Nanofluidic entropic traps, comprising alternating thin and thick regions, sieve small molecules such as DNA or protein polymers and other molecules. The thick region is comparable or substantially larger than the molecule to be separated, while the thin region is substantially smaller than the size of the molecules to be separated. Due to the molecular size dependence of the entropic trapping effect, separation of molecules may be achieved. In addition, entropic traps are used to collect, trap and control many molecules in the nanofluidic channel. A fabrication method is disclosed to provide an efficient way to make nanofluidic constrictions in any fluidic devices.