Abstract:
Methods to improve front-side process uniformity by back-side metallization are disclosed. In some implementations, a metal layer is deposited on the back-side of a wafer prior to performing a plasma-based process on the front side of the wafer. Presence of the back-side metal layer reduces variations in, for example, thickness of a deposited and/or etched layer resulting from the plasma-based process.
Abstract:
An electrode system configured to be positioned within a vacuum chamber of an electron-beam metal evaporation and deposition apparatus including a metal slug from which metal is evaporated during operation of the electron-beam metal evaporation and deposition apparatus. The electrode system includes a substantially ring-shaped electrode formed of a conductive material and a plurality of insulating standoffs configured to support the substantially ring-shaped electrode in the vacuum chamber in a position substantially surrounding the metal slug.
Abstract:
Disclosed are devices and methods related to metallization of semiconductors. A metalized structure can include a stack disposed over a compound semiconductor, with the stack including an ohmic metal layer, a titanium/chromium layer, a metal nitride layer such as a titanium nitride layer, and a copper/aluminum layer. The titanium/chromium layer and metal nitride layer can act as a barrier between the copper/aluminum layer and a substrate.
Abstract:
An electrode system configured to be positioned within a vacuum chamber of an electron-beam metal evaporation and deposition apparatus including a metal slug from which metal is evaporated during operation of the electron-beam metal evaporation and deposition apparatus. The electrode system includes a substantially ring-shaped electrode formed of a conductive material and a plurality of insulating standoffs configured to support the substantially ring-shaped electrode in the vacuum chamber in a position substantially surrounding the metal slug.
Abstract:
Disclosed herein are systems and methods for in-situ measurement of impurities on metal slugs utilized in electron-beam metal evaporation/deposition systems, and for increasing the production yield of a semiconductor manufacturing processes utilizing electron-beam metal evaporation/deposition systems. A voltage and/or a current level on an electrode disposed in a deposition chamber of an electron-beam metal evaporation/deposition system is monitored and used to measure contamination of the metal slug. Should the voltage or current reach a certain level, to the deposition is completed and the system is inspected for contamination.
Abstract:
According to various aspects and embodiments, a support structure for packaging an electronic device is provided. In one example, a packaged electronic device includes a substrate, at least one electronic device disposed on the substrate, an encapsulation structure disposed on the substrate and having a wall that forms a perimeter around the at least one electronic device, and at least one support structure formed from a photosensitive polymer and disposed adjacent the wall of the encapsulation structure. The at least one support structure has a configuration that provides at least one of increased adhesion and mechanical strength to the encapsulation structure.
Abstract:
A system and method for packaging an electronic device are provided. The packaged electronic device may include a structure material having one portion with a first lateral cross-section, and at least one other portion with a second lateral cross-section, where at least one of a dimension and a shape of the second lateral cross-section is different than in the first lateral cross-section.
Abstract:
Disclosed are devices and methods related to metallization of semiconductors. A metalized structure can include a stack disposed over a compound semiconductor, with the stack including a barrier, a copper (Cu) layer disposed over the barrier, and a first titanium (Ti) layer disposed over the Cu layer. The metalized structure can further include a sputtered titanium tungsten (TiW) layer disposed over the first Ti layer. The barrier can include an assembly of titanium nitride (TiN) and Ti layers. The metalized structure can further include a second Ti layer disposed over the sputtered TiW layer.
Abstract:
Disclosed herein are systems and methods for in-situ measurement of impurities on metal slugs utilized in electron-beam metal evaporation/deposition systems, and for increasing the production yield of a semiconductor manufacturing processes utilizing electron-beam metal evaporation/deposition systems. A voltage and/or a current level on an electrode disposed in a deposition chamber of an electron-beam metal evaporation/deposition system is monitored and used to measure contamination of the metal slug. Should the voltage or current reach a certain level, the deposition is completed and the system is inspected for contamination.
Abstract:
An acoustic wave device is disclosed. The acoustic wave device can include a piezoelectric layer, and an interdigital transducer electrode formed with the piezoelectric layer. The interdigital transducer electrode includes a first layer, a second layer over the first layer, and a seed layer between the first layer and the piezoelectric layer. A combination of the first layer and the seed layer has a resistivity that is lower than a resistivity of the first layer alone.