Abstract:
A laser light source, comprising a semiconductor layer sequence on a substrate and having an active region and a radiation coupling out area having first and second partial regions and a filter structure. The active region generates coherent first electromagnetic radiation and incoherent second electromagnetic radiation, the coherent first electromagnetic radiation is emitted by the first partial region along an emission direction, the incoherent second electromagnetic radiation is emitted by the first partial region and by the second partial region. The filter structure at least partly attenuates the incoherent second electromagnetic radiation emitted by the active region along the emission direction. The filter structure has at least one filter element arranged on an area of the semiconductor layer sequence which has an extension direction parallel to the emission direction and which is remote from the substrate.
Abstract:
A laser light source comprises, in particular, a semiconductor layer sequence (10) having an active region (45) and a radiation coupling-out area (12) having a first partial region (121) and a second partial region (122) different than the latter, and a filter structure (5), wherein the active region (45) generates, during operation, coherent first electromagnetic radiation (51) having a first wavelength range and incoherent second electromagnetic radiation (52) having a second wavelength range, the coherent first electromagnetic radiation (51) is emitted by the first partial region (121) along an emission direction (90), the incoherent second electromagnetic radiation (52) is emitted by the first partial region (121) and by the second partial region (122), the second wavelength range comprises the first wavelength range, and the filter structure (5) at least partly attenuates the incoherent second electromagnetic radiation (52) emitted by the active region along the emission direction (90).
Abstract:
A method for producing an optoelectronic semiconductor component includes: epitaxially growing a semiconductor layer sequence including an active layer on a growth substrate, shaping a front facet at the semiconductor layer sequence and the growth substrate, coating a part of the front facet with a light blocking layer for radiation generated in the finished semiconductor component, wherein the light blocking layer is produced by a directional coating method and the light blocking layer is structured during coating by shading by the growth substrate and/or by at least one dummy bar arranged at and/or alongside the growth substrate.
Abstract:
A laser light source comprises, in particular, a semiconductor layer sequence (10) having an active region (45) and a radiation coupling-out area (12) having a first partial region (121) and a second partial region (122) different than the latter, and a filter structure (5), wherein the active region (45) generates, during operation, coherent first electromagnetic radiation (51) having a first wavelength range and incoherent second electromagnetic radiation (52) having a second wavelength range, the coherent first electromagnetic radiation (51) is emitted by the first partial region (121) along an emission direction (90), the incoherent second electromagnetic radiation (52) is emitted by the first partial region (121) and by the second partial region (122), the second wavelength range comprises the first wavelength range, and the filter structure (5) at least partly attenuates the incoherent second electromagnetic radiation (52) emitted by the active region along the emission direction (90).
Abstract:
A laser light source for emitting coherent electromagnetic radiation has a vertical far-field radiation profile, having a series of semiconductor layers for generating the coherent electromagnetic radiation. An active region is located on a substrate. The coherent electromagnetic radiation is emitted during operation in an emission direction at least from a main emission region of a radiation output surface and the radiation output surface is formed by a side surface of the sequence of semiconductor layers. A filter element suppresses coherent electromagnetic radiation in the vertical far-field radiation profile. The radiation was generated during operation and emitted by an auxiliary emission region of the radiation output surface. The auxiliary emission region is vertically offset from and spatially separated from the main emission region.
Abstract:
An etched-facet single lateral mode semiconductor photonic device is fabricated by depositing an anti reflective coating on the etched facet, and depositing a reflectivity modifying coating in a spatially controlled manner to modify the spatial performance of the emitted beam.
Abstract:
A laser diode capable of effectively inhibiting effects of feedback light is provided. A laser diode includes a substrate, and a laminated structure including a first conductive semiconductor layer, an active layer having a light emitting region, and a second conductive semiconductor layer having a projecting part on the surface thereof, on the substrate, wherein a feedback light inhibition part is provided on a main-emitting-side end face, and effects of feedback light in the vicinity of lateral boundaries of the light emitting region are inhibited by the feedback light inhibition part.
Abstract:
The present invention comprises a light absorption film 5 which is formed on the outermost surface of an end surface on the light emitting side of a chip used in a laser device, typically, a laser chip 1 and which absorbs part of the light emitted. By forming this light absorption film 5, the collection and accumulation of pollutants which are caused by reacting with light emitted are curbed.
Abstract:
A semiconductor laser apparatus capable of reducing a spread angle of emission light with downsizing has an active region between first and second end surfaces. A first reflection structure and a partial reflection structure are provided on the first end surface side. The end surface of the active region is divided into a total reflection region and a partial reflection region in combination with the first reflection structure and partial reflection structure. A laser resonator includes the first reflection structure and partial reflection structure. A second reflection structure is positioned on the way of a resonance optical path of the laser resonator. Light emitted within the active region propagates on a resonance optical path. An induction emission is produced. The semiconductor laser carries out a laser oscillation. Of the light arriving at the partial reflection structure, the portion transmitted through the partial reflection structure is outputted outside the apparatus.
Abstract:
A new class of photonic devices called active optical antennas, which consist of metallic structures directly integrated on to the facet of a semiconductor lasers, and of instruments based on such antennas are disclosed. The structures consist of metallic elements which function as antennas at optical wavelengths by spatially concentrating laser radiation of wavelength in the range from the UV to the mid-infrared into spots (with sizes in the range 10-100 nm) in the so called near field zone, that is at subwavelength distances from the facet. Various antenna designs are considered depending on the laser under consideration and applications. This invention has wide ranging applications such as new microscopes for high-resolution spatially resolved imaging and spectroscopy, new probes for biology, laser assisted processing and repair of devices, circuits and masks, as well new optical tweezers and phased array devices. Microscopes and other systems based on this invention are discussed. Further, a number of inventions relating to optical antennas and of instruments based on such antennas are disclosed. An important technology consisting of optical antennas fabricated at the ends of optical fibers is disclosed. A technique for imaging the field distributions on active optical antennas is disclosed. New designs of optical antennas are disclosed. Applications of optical antennas in microfluidic systems are disclosed.