摘要:
A mixer circuit (200, 300, 800, 900) for mixing a first input signal at a first frequency with a second input signal at a second frequency to an output signal at a third frequency. The mixer circuit (200, 300, 800, 900) comprises a mixing stage (205, 805) with differential input ports (206, 207; 820, 821) for the first input signal and an input port (211, 911) for the second input signal and differential output ports for the output signal, which also serve as output ports for the mixer circuit. The mixer circuit (200, 300, 800, 900) comprises a nonlinear digital to analogue converter (210, 810) which has an input port (211) which is the input port for the second input signal and an output port (212) which is connected to the input port of the mixing stage, and the digital to analogue converter has a nonlinear transfer function.
摘要:
A method and system of compensating for distortion in a baseband in-phase (I) and a corresponding baseband quadrature (Q) signal. The circuit includes an in-phase I attenuator configured to attenuate the baseband in-phase I signal and an in-phase Q attenuator configured to attenuate the baseband Q signal. There are one or more circuits that are configured to receive the attenuated in-phase I signal and the attenuated baseband Q signal. Each circuit performs a different calculation based on predetermined equations configured to determine the IM2, HD2@0°, HD2@90°, IM3@0°, IM3@90°, HD3@0°, and HD3@90°. The distortion compensation circuit is configured to use the result of at least one of the calculation circuits to generate I and Q distortion compensation signals.
摘要:
A transmitter power supply modulates an RF signal without needing to run a calibration/training cycle every time an exciter or PA module is switched in and out or every time the transmitter powers up. During calibration of the exciter module, an exciter module delay factor is determined, and stored in the exciter module, for each signal modulation scheme that may be implemented by the exciter module. During calibration of a power amplifier (PA) module, a power supply modulation (PSM) delay factor is determined for, and stored in, the PA module. During transmitter operation, the exciter module generates RF and envelope signals based on an input signal. The PA module generates a power supply voltage based on the envelope signal and a final delay factor, which final delay factor is based on the exciter module and PSM delay factors. The PA module then modulates the RF signal using the power supply voltage.
摘要:
Embodiments of the present invention include amplitude-modulated or polar-modulated radio frequency (RF) power amplifier circuitry, in which an envelope power supply input to an RF power amplifier is powered by a pre-distorted amplitude modulation (AM) power supply. The pre-distorted AM power supply receives an AM signal, which is then pre-distorted and amplified to provide an AM power supply signal to the RF power amplifier. The pre-distortion of the AM signal is used to improve the linearity, the efficiency, or both, of the RF power amplifier. The pre-distortion provides a feed-forward system, which may allow use of a reduced bandwidth pre-distorted AM signal to an AM power supply and a reduced bandwidth AM power supply, which may increase efficiency.
摘要:
An improved fast-switching frequency synthesizer is disclosed. The fast-switching frequency synthesizer, according to the invention, utilizes presteering voltage injection at the voltage controlled oscillator ("VCO") with feedback to allow the VCO, and synthesizer, to quickly transition between two given frequencies. This presteering mechanism, with the feedback, allows the presteering voltage to track the variations in the VCO gain from device to device, and gain changes while in operation. This same information is used to implement a means of automatically adjusting the FM deviation of the transmitter since that information varies with the gain of the VCO as does the FM deviation.
摘要:
A programmable low noise frequency modulated signal source including a voltage controlled oscillator (VCO) having a frequency locked loop (FLL) constituting a first feedback path and a phase lock loop (PLL) constituting a second feedback path is provided. The PLL includes a VCO, a programmable fractional-N frequency division network and a phase detector for comparing the phase of the VCO output signal with the phase of a reference signal and for producing an error signal to controllably adjust the output frequency of the VCO. The FLL includes a delay line frequency discriminator, a loop amplifier and filter to provide a feedback signal to a frequency control terminal of the VCO. The frequency discriminator includes a first signal path having a frequency sensitive time delay network to provide a phase shift as a function of the VCO output signal frequency and a second signal path which includes a voltage controlled phase shifting network. The error signal derived from the PLL phase detector is coupled to an input terminal at the voltage controlled phase shifting network. The PLL error signal in combination with a bias signal adjusts the phase difference between the two frequency discriminator signal paths to set the operating point of the FLL phase detector such that the VCO output signal will have a desired frequency and minimum phase noise.
摘要:
In accordance with the present invention, there is provided a method of substantially flattening the modulation response in a frequency synthesizer. The method includes the steps of generating a synthesized frequency in response to a filtered control signal; scaling the synthesized frequency with a scalar; generating a control signal, having a response substantially the reciprocal of the frequency generation response, and indicative of the phase relationship between a reference frequency and the scaled, synthesized frequency; and filtering the control signal, whereby the interaction of the phase relationship control signal response and the frequency generation response approximates a flat modulation response.
摘要:
The nonlinear characteristics of a voltage controlled oscillator (VCO) in a phase-locked loop are approximately matched by a single diode in the audio circuitry to provide an essentially constant frequency deviation over the entire frequency range of the phase-locked loop during frequency modulation of the phase-locked loop. A compensating circuit which incorporates the diode samples the error voltage of the phase lock loop and biases the diode accordingly. The audio signal is converted to a current which in turn is used to modulate the bias current through the diode. The resulting AC voltage across the diode is thereby amplitude compensated by the bias current to approximately match the nonlinear characteristics of the VCO at each frequency setting of the phase-locked loop.
摘要:
A method and system of compensating for distortion in a baseband in-phase (I) and a corresponding baseband quadrature (Q) signal. The circuit includes an in-phase I attenuator configured to attenuate the baseband in-phase I signal and an in-phase Q attenuator configured to attenuate the baseband Q signal. There are one or more circuits that are configured to receive the attenuated in-phase I signal and the attenuated baseband Q signal. Each circuit performs a different calculation based on predetermined equations configured to determine the IM2, HD2@0°, HD2@90°, IM3@0°, IM3@90°, HD3@0°, and HD3@90°. The distortion compensation circuit is configured to use the result of at least one of the calculation circuits to generate I and Q distortion compensation signals.
摘要:
A mixer circuit (200, 300, 800, 900) for mixing a first input signal at a first frequency with a second input signal at a second frequency to an output signal at a third frequency. The mixer circuit (200, 300, 800, 900) comprises a mixing stage (205, 805) with differential input ports (206, 207; 820, 821) for the first input signal and an input port (211, 911) for the second input signal and differential output ports for the output signal, which also serve as output ports for the mixer circuit. The mixer circuit (200, 300, 800, 900) comprises a nonlinear digital to analogue converter (210, 810) which has an input port (211) which is the input port for the second input signal and an output port (212) which is connected to the input port of the mixing stage, and the digital to analogue converter has a nonlinear transfer function.