Abstract:
A process for extracting a phosgene compound, comprising providing a membrane extracting unit comprising at least one extracting cell that comprises at least one membrane contactor module having at least two sides, a gas side and a liquid side; letting an initial gas stream comprising a phosgene compound flow on the gas side of the membrane contactor module; and letting an extractant liquid stream, suitable for dissolving a phosgene compound, flow on the liquid side of the membrane contactor module so that the extractant liquid stream absorbs the phosgene compound from the initial gas stream and provides a second extractant liquid stream enriched with the phosgene compound.
Abstract:
In an embodiment, a method of producing carbonate can comprise: reacting a feed comprising carbon monoxide and chlorine in a tube of a reactor to produce a product composition comprising phosgene, wherein the tube has a particulate catalyst contained therein, wherein a thermally conductive material separate from the tube contacts at least a portion of the particulate catalyst, and wherein carbon tetrachloride is present in the product composition in an amount of 0 to 10 ppm by volume based on the volume of the phosgene; and reacting a monohydroxy compound with the phosgene to produce the carbonate.
Abstract:
A method of making an amino acid triisocyanate is provided, the method comprising reacting an amino acid trihydrochloride with phosgene to form the amino acid triisocyanate. In some embodiments, the amino acid trihydrochloride comprises lysine ester trihydrochloride salt and the amino acid triisocyanate comprises lysine ester triisocyanate. In some embodiments, there is a lysine ester triisocyanate having a purity of at least about 98%, the lysine ester triisocyanate having a structure resulting from reacting lysine ester trihydrochloride salt with phosgene to form the lysine ester triisocyanate. These lysine ester triisocyanates can be used to make biodegradable polyurethanes.
Abstract:
Carbonyl difluorides of the formulaF--(CO).sub.n --F,in which n is 1 (difluorophosgene) or 2 (oxalyl fluoride), are prepared by fluorination of the corresponding carbonyl dichlorides (phosgene, oxalyl chloride) with HF in the presence of CH.sub.3 CN and optionally also of a tertiary amine which binds HCl.
Abstract:
In an embodiment, a method of producing a carbonate comprises reacting carbon monoxide and chlorine in a phosgene reactor in the presence of a catalyst to produce a first product comprising phosgene; wherein carbon tetrachloride is present in the first product in an amount of 0 to 10 ppm by volume based on the total volume of phosgene; and reacting a monohydroxy compound with the phosgene to produce the carbonate; wherein the phosgene reactor comprises a tube, a shell, and a space located between the tube and the shell; wherein the tube comprises one or more of a mini-tube section and a second tube section; a first concentric tube concentrically located in the shell; a twisted tube; an internal scaffold; and an external scaffold.
Abstract:
In an embodiment, a method of producing phosgene in a tube reactor comprises introducing a feed comprising carbon monoxide and chlorine to a tube of the reactor, the tube having a particulate catalyst disposed therein, wherein a thermally conductive material separate from the tube contacts at least a portion of the particulate catalyst; to produce a product composition comprising phosgene, and carbon tetrachloride in an amount of 0 to 10 ppm by volume based on the volume of the phosgene.
Abstract:
The invention relates to a device (R) for producing phosgene by reacting chlorine and carbon monoxide in the presence of a fixed-bed catalyst, comprising a) a tube bundle, which is arranged inside a reactor jacket (4) and which has a plurality of reaction tubes (3), which are arranged substantially parallel to each other and which extend from a lower tube sheet (2) to an upper tube sheet (2), and b) a coolant space for a cooling fluid, which coolant space surrounds the reaction tubes (3) and is defined by the lower tube sheet (1), the upper tube sheet (2), and the reactor jacket (4), wherein the device is characterized in that the tube bundle is enclosed by an annular-space sheet (7), which defines an inner annular space (12) for the passage of the cooling fluid and which is arranged at a distance from both the lower tube sheet (1) and the upper tube sheet (2), wherein an outer annular space (13) for feeding liquid cooling fluid through is formed between the annular-space sheet (7) and the reactor jacket (4), which outer annular space is in fluid connection with the inner annular space (12). The invention further relates to a method for producing phosgene by means of such a device.
Abstract:
A process for preparing phosgene by reaction of a feed stream (1) obtained by combining and mixing a chlorine feed stream (2) and a carbon monoxide feed stream (3), with the carbon monoxide being introduced in a stoichiometric excess over chlorine, in catalyst tubes filled with beds of activated carbon in a reactor R having a bundle of catalyst tubes,to give a product gas mixture (4)which is separated into a liquid, phosgene-comprising product stream (5) and an offgas stream (6) comprising carbon monoxide which is discharged via a pressure-regulating valve, where the reaction of the feed stream (1) in the reactor R and the separation of the product gas mixture (4) are carried out under a pressure in the range from 2.0 to 6.0 bar gauge pressure, whereinthe excess of carbon monoxide in the feed stream (1) to the reactor R is regulated by continuously measuring the flow and the concentration of carbon monoxide in the offgas stream (6), calculating the actual value of the excess of carbon monoxide in the feed stream (1) to the reactor R from these measurements in combination with the continuously measured values for the flow of the carbon monoxide feed stream (3) and the flow of and the chlorine concentration in the chlorine feed stream (2) and matching this to the intended value of the excess of carbon monoxide in the feed stream (1) to the reactor R by adapting the flow of the carbon monoxide feed stream (3), is proposed.
Abstract:
A reactor (1) for preparing phosgene by gas-phase reaction of carbon monoxide and chlorine in the presence of a solid catalyst, which reactor has a bundle of parallel catalyst tubes (2) aligned in the longitudinal direction of the reactor whose ends are fixed in tube plates (3) and have a cap (4) at each end of the reactor (1), and has deflection plates (6) which are aligned perpendicular to the longitudinal direction of the reactor in the intermediate space (5) between the catalyst tubes (2) and leave free passages (7) located alternately opposite one another on the interior wall of the reactor, and in which the catalyst tubes (2) are charged with the solid catalyst, the gaseous reaction mixture is passed from one end of the reactor via one cap (4) through the catalyst tubes (2) and is taken off from the opposite end of the reactor (1) via the second cap (4) and a liquid heat transfer medium is passed through the intermediate space (5) around the catalyst tubes (2), where the reactor (1) has no tubes in the region of the passages (7), is proposed.
Abstract:
The invention relates to a process for producing carbonyl difluoride. This process includes the steps of (a) reacting carbon monoxide with a first metal fluoride in a reactor, thereby obtaining carbonyl difluoride and a second metal fluoride having in the molecule a fluorine atom number less than that of the first metal fluoride; and (b) reacting the second metal fluoride with fluorine in the reactor, thereby obtaining the first metal fluoride. The steps (a) and (b) are alternately repeated in the reactor, thereby repeatedly producing carbonyl difluoride.