Abstract:
The invention relates a process for producing an alkali metal nitrate and an alkali metal phosphate in the same process from a phosphate raw material and a nitrate raw material comprising the steps of: a) reacting the phosphate raw material with the nitrate raw material to provide an aqueous nitrophosphate feed, optionally followed by the separation of solid material, b) introducing the aqueous nitrophosphate feed into a first ion exchange step comprising an alkali metal-loaded cationic exchange resin for exchanging cations present in the feed with alkali metal ions present on the resin to obtain a stream enriched in alkali metal ions, c) subjecting the stream from step (b) to a first crystallization under such conditions that an alkali metal nitrate is crystallized and separating the crystallized alkali metal nitrate from the mother liquor, d) introducing the mother liquor from step (c) into a second ion exchange step comprising an alkali metal-loaded cationic exchange resin for exchanging cations present in the mother liquor with alkali metal ions present on the resin to obtain a phosphate containing stream enriched in alkali metal ions, and e) subjecting the stream from step (d) to a second crystallization under such conditions that an alkali metal phoshate is crystallized and separating the crystallized alkali metal phosphate from the mother liquor.
Abstract:
A method of forming a powder MjXp wherein Mj is a positive ion or several positive ions selected from alkali metal, alkaline earth metal or transition metal; and Xp is a monoatomic or a polyatomic anion selected from Groups IIIA, IVA, VA, VIA or VIIA; called complexometric precursor formulation or CPF. The method includes the steps of: providing a first reactor vessel with a first gas diffuser and an first agitator; providing a second reactor vessel with a second gas diffuser and a second agitator; charging the first reactor vessel with a first solution comprising a first salt of Mj; introducing gas into the first solution through the first gas diffuser, charging the second reactor vessel with a second solution comprising a salt of Mp; adding the second solution to the first solution to form a complexcelle; drying the complexcelle, to obtain a dry powder; and calcining the dried powder of said MjXp.
Abstract:
Active materials of the invention contain at least one alkali metal and at least one other metal capable of being oxidized to a higher oxidation state. Preferred other metals are accordingly selected from the group consisting of transition metals (defined as Groups 4-11 of the periodic table), as well as certain other non-transition metals such as tin, bismuth, and lead. The active materials may be synthesized in single step reactions or in multi-step reactions. In at least one of the steps of the synthesis reaction, reducing carbon is used as a starting material. In one aspect, the reducing carbon is provided by elemental carbon, preferably in particulate form such as graphites, amorphous carbon, carbon blacks and the like. In another aspect, reducing carbon may also be provided by an organic precursor material, or by a mixture of elemental carbon and organic precursor material.
Abstract:
A process for the preparation of aqueous metal nitrate solutions by dissolving the metal in nitric acid. The formation of ammonium nitrate is suppressed and the dissolution process is accelerated by adding nitrous acid or a substance which forms nitrous acid.
Abstract:
An improved gas diffusion electrode composed of a perovskite-type oxide dispersed in a mixture of carbon black and a hydrophobic binder polymer. An improved catalyst for use in the electrochemical reduction of oxygen comprising a perovskite-type compound having alpha and beta sites, and having a greater molar ratio of cations at the beta site. A particularly good reduction catalyst is a neodymium calcium manganite. An improved method of dispersing the catalysts with carbon in a reaction layer of the electrode improves performance of the electrode and the oxygen reduction process. This is provided by adding carbon black to an aqueous solution of metal salts before it is heated to a gel and then to a char and then calcined. Optionally, a quantity of the desired oxide catalyst can be premixed with a portion the carbon before adding the carbon to an aqueous solution of the metal salts to be heated. The amount of premixed metal oxide is chosen in conjunction with the amount of metal salts to provide the desired molar ratio after heating and calcining of the aqueous solution.
Abstract:
Basic aluminum halides and nitrates having enhanced antiperspirant efficacy are produced by reacting (a) aluminum powder, (b) an aluminum halide or nitrate solution and (c) water at a temperature greater than about 85.degree. C. This reaction is maintained until reaction products having an Al:anion ratio of about 1.2 to 1.8 and a solution solids concentration of about 30-40 wt. % on an anhydrous basis are obtained. The products are characterized as having a Size Exclusion Chromatography Test Band having a relative retention time corresponding to Band II of a Standard Basic Aluminum Chloride Size Exclusion Chromatogram and a Band II percent aluminum value of at least about 50% and a Band III percent aluminum value of less than 20%.
Abstract:
Uniform microspheres substantially or completely free from internal cavities and voids are prepared by spraying an aqueous hydrated metal oxide solution onto the surface of a water-immiscible organic liquid containing from 0.04 to 2.0 percent by volume of a surface active agent, the viscosities of each of the organic and inorganic phases plus the amount of surface active agent within the above range being selected such that there is sufficient surface active agent present to prevent the globules from adhering to each other yet an insufficient amount to prevent deformation from the substantially spherical shape.