摘要:
A method for doping crystals is disclosed. The method includes a receiver for receiving semiconductor spheres and doping powder. The semiconductor spheres and dopant powder are then directed to a chamber defined within an enclosure. The chamber maintains a heated, inert atmosphere with which to diffuse the dopant to the semiconductor spheres.
摘要:
The invention includes a method of etching silicon dioxide, comprising doping a layer of silicon dioxide to form a layer of doped silicon dioxide and etching the doped silicon dioxide layer with phosphoric acid.
摘要:
A method is disclosed in which a lightly doped region in a semiconductor layer is obtained by diffusing dopant atoms of a first and second type into the underlying semiconductor layer. Preferably, the method is applied to the formation of lightly doped source and drain regions in a field effect transistor so as to obtain a required gradual dopant concentration transition from the general region to the drain and source regions for avoiding the hot carrier effect. Advantageously, a diffusion of the dopant atoms is initiated during an oxidizing step in which the thickness of the gate insulation layer is increased at the edge portions thereof.
摘要:
The present invention provides a system and method for creating self-doping contacts to silicon devices in which the contact metal is coated with a layer of dopant and subjected to high temperature, thereby alloying the silver with the silicon and simultaneously doping the silicon substrate and forming a low-resistance ohmic contact to it. A self-doping negative contact may be formed from unalloyed silver which may be applied to the silicon substrate by either sputtering, screen printing a paste or evaporation. The silver is coated with a layer of dopant. Once applied, the silver, substrate and dopant are heated to a temperature above the Ag—Si eutectic temperature (but below the melting point of silicon). The silver liquefies more than a eutectic proportion of the silicon substrate. The temperature is then decreased towards the eutectic temperature. As the temperature is decreased, the molten silicon reforms through liquid-phase epitaxy and while so doing dopant atoms are incorporated into the re-grown silicon lattice. Once the temperature drops below the silver-silicon eutectic temperature the silicon which has not already been reincorporated into the substrate through epitaxial re-growth forms a solid-phase alloy with the silver. This alloy of silver and silicon is the final contact material, and is composed of eutectic proportions of silicon and silver. Under eutectic proportions there is significantly more silver than silicon in the final contact material, thereby insuring good electrical conductivity of the final contact material.
摘要:
A method of manufacturing a flash memory device in which minimal gate edge lifting is accomplished by minimally oxidizing the gate stack and exposed surface of the substrate, anisotropically etching the layer of oxide from the substrate, forming a doped solid source material on portions of the substrate in which source regions are to be formed and diffusing the dopants from the solid source material into the substrate.
摘要:
The semiconductor component is fabricated on the basis of a semiconductor body with a first and a second surface. A multiplicity of pores are formed in the semiconductor body. The pores extend into the semiconductor body proceeding from the first surface and ending below the second surface. The electrical conductivity of the semiconductor body, that is of the component, is increased in the region of the pores. The corresponding semiconductor component has connection contacts on the first and second surfaces.
摘要:
Deep profile and highly doped impurity regions can be formed by diffusing from a solid source or doped silicon glass and using a patterned nitride layer. An oxide etch stop and polysilicon sacrificial layer are left in place in the patterned regions and the dopant is diffused through those layers. The polysilicon provides sacrificial silicon that serves to prevent the formation of boron silicon nitride on the substrate surface and also protects the oxide layer during etching of the silicon glass layer. The oxide layer then acts as an etch stop during removal of the polysilicon layer. In this way, no damage done to the substrate surface during the diffusion or subsequent etch steps and the need for expensive ion implanter steps is avoided.
摘要:
A gate structure for an ONO flash memory device includes a first layer of silicon oxide on top of a semiconductor substrate, a second layer of silicon oxide, a layer of silicon nitride sandwiched between the two silicon oxide layers, and a control gate on top of the second layer of silicon oxide. Nitrogen is implanted into the first layer of silicon oxide and then the semiconductor structure is heated using a rapid thermal tool to anneal out the implant damage and to diffuse the implanted nitrogen to the substrate and silicon oxide interface to cause SiN bonds to be formed at that interface. The SiN bonds are desirable because they improve the bonding strength at the interface and the nitrogen remaining in the silicon oxide layer increases the oxide bulk reliability.
摘要:
Transient voltage suppressor semiconductor devices and other semiconductor devices having rigorous requirements for the diffusion and depth of impurities to produce P-N junctions can be fabricated at surprisingly low costs without sacrifice of functional characteristics by subjecting the substrate to a grinding process resulting in a surface short of polishing perfection, thereby to eliminate the time-consuming and hence costly conventional polishing operation, and then diffusing the desired impurity into the substrate from a solid impurity source.