Abstract:
In sophisticated semiconductor devices and asymmetric transistor configuration may be obtained on the basis of an asymmetric well implantation while avoiding a tilted implantation process. For this purpose a graded implantation mask may be formed, such as a graded resist mask, which may have a higher ion blocking capability at the drain side compared to the source side of the asymmetric transistor. For instance, the asymmetric configuration may be obtained on the basis of a non-tilted implantation process with a high degree of performance gain and may be accomplished irrespective of the technology standard under consideration.
Abstract:
Embodiments of the invention provide a device with a reverse-tapered gate electrode and a gate dielectric layer with a length close to that of the gate length. In an embodiment, this may be done by altering portions of a blanket dielectric layer with one or more angled ion implants, then removing the altered portions of the blanket dielectric layer.
Abstract:
A persistent p-type group II-VI semiconductor material is disclosed containing atoms of group II elements, atoms of group VI elements, and a p-type dopant which replaces atoms of the group VI element in the semiconductor material. The p-type dopant has a negative oxidation state. The p-type dopant causes formation of vacancies of atoms of the group II element in the semiconductor material. Fabrication methods and solid state devices containing the group II-VI semiconductor material are disclosed.
Abstract:
A method for anisotropically and selectively removing a dielectric thin film layer (102, 103) from a substrate layer (100) is disclosed, wherein the dielectric layer is subjected to ion implantation (122) prior to wet etching. This method may be applied adjacent to a structure such as a gate electrode within a microelectronic structure to prevent undercutting of the dielectric material to be preserved between the gate electrode and the substrate layer, as may happen with more isotropic etching techniques.
Abstract:
The invention relates to a method of manufacturing a (horizontal) MOST, as used, for example, in (BI)CMOS ICs. On either side of a gate electrode (2), the surface of a silicon substrate (10, 11) which is positioned above a gate oxide (1A) is provided with a dielectric layer (1B) at the location where a source (3) and drain (4) are to be formed, which dielectric layer includes a thermal oxide layer (1B) to be formed as the starting layer. The source (3) and/or drain (4) is/are provided with LDD regions (3A, 4A) and the remaining parts (3B, 4B) of the source (3) and drain (4) are provided by an ion implantation (I1) of doping atoms into the silicon substrate (10, 11). A MOST obtained in this way still suffers from so-called short-channel effects, resulting in a substantial dependence of the threshold voltage upon the length of the gate electrode (2), in particular in the case of very short lengths of the gate electrode (2). In a method according to the invention, the LDD regions (3A, 4A) are made as follows: in a first step, suitable doping atoms (D) are implanted into the dielectric layer (1B), in a second ion implantation (I2), and subsequently in a second step, a part of the doping atoms (D) is diffused from the dielectric layer (1B) into the silicon substrate (10, 11), whereby the LDD regions (3A, 4A) are formed. This method enables a MOST with excellent properties to be obtained, for example with a flatter profile of the threshold voltage versus the gate-electrode (2) length (curve 130) than in conventionally made MOSTs (curve 131). This result is obtained in a simple and reproducible manner.
Abstract:
A semiconductor device (400) formed in a semiconductor substrate (402) with a low hydrogen content barrier layer (432) formed over the semiconductor device (400). The barrier layer (432) is implanted with phosphorous ions (429). The semiconductor device (400) may have a hydrogen getter layer (424) formed under the barrier layer (432). The barrier layer (432) is a high temperature PECVD nitride film, a high temperature PECVD oxynitride film or a high temperature LPCVD nitride film. The hydrogen getter layer (424) is P-doped film having a thickness between 1000 and 2000 Angstroms and is a PSG, BPSG, PTEOS deposited oxide film, or BPTEOS deposited oxide film. Interconnects (438) are made by a tungsten damascene process.
Abstract:
Provided are methods of reducing the stress of a semiconductor wafer. A wafer map of a free-standing wafer is created using metrology tools. The wafer map is then converted into a power spectral density (PSD) using a spatial frequency scale. The fundamental component of bow is then compensated with a uniform film, e.g., silicon nitride (SiN), deposited on the back side of the wafer.
Abstract:
Disclosed are methods for etching a silicon-containing film to form a patterned structure, methods for reinforcing and/or strengthening and/or minimizing damage of a patterned mask layer while forming a patterned structure and methods for increasing etch resistance of a patterned mask layer in a process of forming a patterned structure. The methods include using an activated iodine-containing etching compound having the formula CnHxFylz, wherein 4≤ n ≤ 10, 0 ≤ x ≤ 21, 0 ≤ y ≤ 21, and 1 ≤ z ≤ 4 as an etching gas. The activated iodine-containing etching compound produces iodine ions, which are implanted into the patterned hardmask layer, thereby strengthening the patterned mask layer.
Abstract:
Some embodiments include an integrated assembly having a vertical stack of alternating insulative levels and conductive levels. The insulative levels have a same primary composition as one another. At least one of the insulative levels is compositionally different relative to others of the insulative levels due to said at least one of the insulative levels including dopant dispersed within the primary composition. An opening extends vertically through the stack. Some embodiments include methods of forming integrated assemblies.
Abstract:
L'invention concerne un procédé de réalisation d'au moins une monocouche (L) d'un matériau bidimensionnel (mat2D), ledit matériau bidimensionnel comprenant au moins un élément M métal et un élément X chalcogène, le procédé comprenant : -une étape (100) d'apport de l'élément M et une étape (200) d'apport de l'élément X de manière à former, dans un substrat (Sub, L Au ) une zone (Z[M+X]) comprenant des atomes de l'élément M et des atomes de l'élément X, -une étape de recuit (300) de manière à former l'au moins une monocouche (L) de matériau bidimensionnel (mat2D) par diffusion desdits atomes dans ledit substrat, et dans lequel chaque étape d'apport (100,200) est réalisée par implantation ionique.