Abstract:
Methods of forming silicon oxide layers are described. The methods include the steps of concurrently combining both a radical precursor and a radical-oxygen precursor with a carbon-free silicon-containing precursor. One of the radical precursor and the silicon-containing precursor contain nitrogen. The methods result in depositing a silicon-oxygen-and-nitrogen-containing layer on a substrate. The oxygen content of the silicon-oxygen-and-nitrogen-containing layer is then increased to form a silicon oxide layer which may contain very little nitrogen. The radical-oxygen precursor and the radical precursor may be produced in separate plasmas or the same plasma. The increase in oxygen content may be brought about by annealing the layer in the presence of an oxygen-containing atmosphere and the density of the film may be increased further by raising the temperature even higher in an inert environment.
Abstract:
An improved, lower cost method of processing substrates, such as to create solar cells is disclosed. The doped regions are created on the substrate, using a mas or without the use of lithography or masks. After the implantation is complete, visual recognition is used to determine the exact region that was implanted. This information can then be used by subsequent process steps to maintain this alignment. This information can also be fed back to the ion implantation equipment to modify the implant parameters. These techniques can also be used in other ion implanter applications.
Abstract:
The invention relates to a method of manufacturing a (horizontal) MOST, as used, for example, in (BI)CMOS ICs. On either side of a gate electrode (2), the surface of a silicon substrate (10, 11) which is positioned above a gate oxide (1A) is provided with a dielectric layer (1B) at the location where a source (3) and drain (4) are to be formed, which dielectric layer includes a thermal oxide layer (1B) to be formed as the starting layer. The source (3) and/or drain (4) is/are provided with LDD regions (3A, 4A) and the remaining parts (3B, 4B) of the source (3) and drain (4) are provided by an ion implantation (I1) of doping atoms into the silicon substrate (10, 11). A MOST obtained in this way still suffers from so-called short-channel effects, resulting in a substantial dependence of the threshold voltage upon the length of the gate electrode (2), in particular in the case of very short lengths of the gate electrode (2). In a method according to the invention, the LDD regions (3A, 4A) are made as follows: in a first step, suitable doping atoms (D) are implanted into the dielectric layer (1B), in a second ion implantation (I2), and subsequently in a second step, a part of the doping atoms (D) is diffused from the dielectric layer (1B) into the silicon substrate (10, 11), whereby the LDD regions (3A, 4A) are formed. This method enables a MOST with excellent properties to be obtained, for example with a flatter profile of the threshold voltage versus the gate-electrode (2) length (curve 130) than in conventionally made MOSTs (curve 131). This result is obtained in a simple and reproducible manner.
Abstract:
Disclosed are methods for etching a silicon-containing film to form a patterned structure, methods for reinforcing and/or strengthening and/or minimizing damage of a patterned mask layer while forming a patterned structure and methods for increasing etch resistance of a patterned mask layer in a process of forming a patterned structure. The methods include using an activated iodine-containing etching compound having the formula CnHxFylz, wherein 4≤ n ≤ 10, 0 ≤ x ≤ 21, 0 ≤ y ≤ 21, and 1 ≤ z ≤ 4 as an etching gas. The activated iodine-containing etching compound produces iodine ions, which are implanted into the patterned hardmask layer, thereby strengthening the patterned mask layer.
Abstract:
An integrated circuit structure may include a transistor on a front-side semiconductor layer supported by an isolation layer. The transistor is a first source/drain/body region. The integrated circuit structure may also include a raised source/drain/body region coupled to a backside of the first source/drain/body region of the transistor. The transistor is a raised source/drain/body region extending from the backside of the first source/drain/body region toward a backside dielectric layer supporting the isolation layer. The integrated circuit structure may further include a backside metallization coupled to the raised source/drain/body region.
Abstract:
Sophisticated gate electrode structures may be formed by providing a cap layer (121) including a desired species that may diffuse into the gate dielectric material (110) prior to performing a treatment for stabilizing the sensitive gate dielectric material (110). In this manner, complex high-k metal gate electrode structures may be formed on the basis of reduced temperatures and doses for a threshold adjusting species compared to conventional strategies. Moreover, a single metal-containing electrode material may be deposited for both types of transistors.
Abstract:
A field effect transistor having a gate structure that comprises an interfacial layer positioned in between the transistor channel region and a high-K dielectric layer of the gate stack. The interfacial layer comprises Al x Si y O z , which has a higher relative dielectric constant value than SiO 2 . A method of forming the gate structure of a field effect transistor. The method includes forming a gate stack comprising, in order: a SiO 2 -based layer adjacent a channel region of the field effect transistor; a high-K dielectric layer on the SiO 2 -based layer; and a gate electrode on the high-K dielectric layer. The method also includes introducing Al into the SiO 2 -based layer to form an Al x Si y O z interfacial layer in between the high-K dielectric layer and the channel region. A heating step to allows Al introduced into channel region to diffuse out of the channel region into the interfacial layer.
Abstract translation:具有栅极结构的场效应晶体管包括位于晶体管沟道区域和栅极叠层的高K电介质层之间的界面层。 界面层包含Al x Se y O z,其比SiO 2具有更高的相对介电常数值。 一种形成场效应晶体管的栅极结构的方法。 该方法包括形成栅极堆叠,其顺序包括:与场效应晶体管的沟道区相邻的基于SiO 2的层; 在SiO 2基层上的高K电介质层; 以及在高K电介质层上的栅电极。 该方法还包括将Al引入SiO 2基层中以在高K电介质层和沟道区之间形成Al x Se y O z界面层。 加热步骤,允许引入通道区域的Al扩散到沟道区域内进入界面层。
Abstract:
Low dielectric constant group II-VI compounds, such as zinc oxide, and fabrication methods are disclosed. Low dielectric constant insulator materials are fabricated by doping zinc oxide with at least one mole % p-type dopant ion. Low dielectric constant zinc oxide insulator materials are fabricated by doping zinc oxide with silicon having a concentration of at least 1017 atoms/cm3. Low dielectric zinc oxide insulator materials are fabricated by doping zinc oxide with a dopant ion having a concentration of at least about 1018 atoms/cm3, followed by heating to a temperature which converts the zinc oxide to an insulator. The temperature varies depending upon the choice of dopant. For arsenic, the temperature is at least about 450°C; for antimony, the temperature is at least about 650°C. The dielectric constant of zinc oxide semiconductor is lowered by doping zinc oxide with a dopant ion at a concentration at least about 1018 to about 1019 atoms/cm3.
Abstract:
Methods of fabricating semiconductor p-n junctions and semiconductor devices containing p-n junctions are disclosed in which the p-n junctions contain concentration profiles for the p-type and n-type dopants that are controllable and independent of a dopant diffusion profile. The p-n junction is disposed between a layer of semiconductor doped with a p-type dopant and a layer of semiconductor doped with an n-type dopant. The p-n junction is fabricated using a crystal growth process that allows dynamic control and variation of both p-type and n-type dopant concentrations during the crystal growth process.
Abstract:
A method is proposed for the fabrication of the gate electrode of a semiconductor device such that the effects of gate depletion are minimized. The method is comprised of a dual deposition process wherein the first step is a very thin layer that is doped very heavily by ion implantation. The second deposition, with an associated ion implant for doping, completes the gate electrode. With the two-deposition process, it is possible to maximize the doping at the gate electrode/gate dielectric interface while minimizing risk of boron penetration of the gate dielectric. A further development of this method includes the patterning of both gate electrode layers with the advantage of utilizing the drain extension and source/drain implants as the gate doping implants and the option of offsetting the two patterns to create an asymmetric device. A method is also provided for the formation of shallow junctions in a semiconductor substrate by diffusion of dopant from an implanted layer contained within a dielectric layer into the semiconductor surface. Further, the ion implanted layer is provided with a second implanted species, such as hydrogen, in addition to the intended dopant species, wherein said species enhances the diffusivity of the dopant in the dielectric layer.