Abstract:
The invention provides a method of treating a multilayer structure (211), the multilayer structure (211) comprising a wafer (208) bonded to a substrate (210) at a bonding interface, a bonding oxide layer (206) being disposed between the wafer (208) and the substrate (210), the method comprising at least one step of chemically etching the wafer (208), the method further comprising, before the chemical etching step, a step of partially deoxidizing the bonding oxide layer (206) of the multilayer structure (211) by hydrofluoric acid chemical etching in order to eliminate a peripheral portion of the bonding oxide layer (206).
Abstract:
The present invention relates a method for the formation of an at least partially relaxed strained material layer, the method comprising the steps of providing a seed substrate; patterning the seed substrate; growing a strained material layer on the patterned seed substrate; transferring the strained material layer from the patterned seed substrate to an intermediate substrate; and at least partially relaxing the strained material layer by a heat treatment.
Abstract:
Epitaxial formation structures and associated methods of manufacturing solid state lighting ("SSL") devices with target thermal expansion characteristics are disclosed herein. In one embodiment, an SSL device includes a composite structure having a composite CTE temperature dependency, a formation structure on the composite structure, and an SSL structure on the formation structure. The SSL structure has an SSL temperature dependency, and a difference between the composite CTE and SSL temperature dependencies is below 3ppm/°C over the temperature range.
Abstract:
An object is to provide a semiconductor device with reduced standby power. A transistor including an oxide semiconductor as an active layer is used as a switching element, and supply of a power supply voltage to a circuit in an integrated circuit is controlled by the switching element. Specifically, when the circuit is in an operation state, supply of the power supply voltage to the circuit is performed by the switching element, and when the circuit is in a stop state, supply of the power supply voltage to the circuit is stopped by the switching element. In addition, the circuit supplied with the power supply voltage includes a semiconductor element which is a minimum unit included in an integrated circuit formed using a semiconductor. Further, the semiconductor included in the semiconductor element contains silicon having crystallinity (crystalline silicon).
Abstract:
L'invention concerne un procédé de fabrication d'un film multicouche (2') comprenant au moins une couche ultra mince de silicium cristallin (2), à partir d'un substrat (S) ayant une structure cristalline et comprenant une surface préalablement nettoyée. Selon l'invention, le procédé comprend une étape a) d'exposition de la surface nettoyée à un plasma radiofréquence généré dans un mélange gazeux de SiF4, d'hydrogène et d'argon, afin de former sur la surface nettoyée, une couche ultra mince de silicium cristallin (2) comportant plusieurs sous couches (19, 20, 21 ) dont une sous couche d'interface (19) en contact avec le substrat (S) et comprenant des microcavités, une étape b) de dépôt d'au moins une couche de matériau sur la couche ultra mince de silicium cristallin (2) pour former, avec ladite couche ultra mince de silicium cristallin (2), un film multicouche (2'), ledit film multicouche comprenant au moins une couche mécaniquement résistante (3) pour former un film multicouche (2') ayant une résistance suffisante pour permettre le décollement dudit film multicouche (2') sans endommager la couche ultra mince de silicium cristallin (2), et une étape c) de recuit du substrat (S) recouvert dudit film multicouche (2'), à une température supérieure à 400 °C, permettant la séparation dudit film multicouche (2') du substrat (S).
Abstract:
Methods for fabricating integrated circuit devices on an acceptor substrate devoid of circuitry are disclosed. Integrated circuit devices are formed by sequentially disposing one or more levels of semiconductor material on an acceptor substrate, and fabricating circuitry on each level of semiconductor material before disposition of a next higher level. After encapsulation of the circuitry, the acceptor substrate is removed and semiconductor dice are singulated. Integrated circuit devices formed by the methods are also disclosed.
Abstract:
A method of bonding by molecular bonding between at least one lower wafer (20) and an upper wafer (30) comprises positioning the upper wafer on the lower wafer. In accordance with the invention, a contact force (F) is applied to the peripheral side (22, 32) of at least one of the two wafers (30, 20) in order to initiate a bonding wave between the two wafers.