Abstract:
This disclosure provides systems, methods and apparatus for sense elements in an electromechanical microphone device. In one aspect, a piezoelectric sense element may include a glass substrate, electrode layers, piezoelectric layers, and elastic layers. The elastic layers may serve to modify the neutral plane of the piezoelectric sense element. Including an elastic layer or layers to modify the neutral plane of the piezoelectric sense element may serve to configure the sense element such that the piezoelectric layer generates a voltage in response to a sound wave or may serve to increase the sensitivity of the sense element.
Abstract:
This disclosure provides systems, methods and apparatus for glass packaging of integrated circuit (IC) and electromechanical systems (EMS) devices. In one aspect, fabricating a glass package includes joining a cover glass panel to a glass substrate panel, and singulating the joined panels to form individual glass packages, each including one or more encapsulated devices and one or more signal transmission pathways. In another aspect, a glass package may include a glass substrate, a cover glass and one or more devices encapsulated between the glass substrate and the cover glass.
Abstract:
This disclosure provides systems, methods and apparatus providing electrical connections through glass substrates. In one aspect, a thin film through-glass via including a through-glass via hole and a thin conductive film that conformally coats the sidewalls of the through-glass via hole is provided. A contour of a through-glass via hole may include concave portions that overlap at a midsection of the glass, with the through-glass via hole sidewalls curved inward to form the concave portions. In another aspect, one or more methods of forming through-glass vias are provided. In some implementations, the methods include double-sided processes to form aligned via holes in a glass substrate that together form a contoured through-glass via hole, followed by deposition of a thin continuous film of a conductive material.
Abstract:
This disclosure provides systems, methods and apparatus implementations of a display device with a cover glass apparatus that serves as a single or multi-touch sensor, as a handwriting (or note capture) input device, and in some configurations as a fingerprint sensor. Sensor functionality and resolution can be tailored to specific locations on the cover glass apparatus. In some such implementations, the area in which the fingerprint sensing elements are located may provide not only fingerprint detection, but also handwriting and touch functionality. In some other implementations, the fingerprint sensor may be segregated into a separate, high-resolution zone that only provides fingerprint functionality.
Abstract:
Applicants have discovered new methods and apparatuses for determining the fractional composition of a component in a multi-component mixture using multivariate statistical analysis of the ultrasonic frequency profile. Applicants show the use of ultrasonic spectrophonometry to determine the fractional composition of a component in a 3-component solvent mixture comprising water, ethanol and methanol as well as determination of the fractional composition of certain contaminants in water. Applicants provide a method of determining a fractional composition of a component in a multi- component mixture comprising pulsing a mixture with a source of ultrasounds, detecting "non-linear" ultrasonic spectral data propagating through the mixture and computing the fractional composition of the component.
Abstract:
Systems, methods, processes, and/or heaters for treating a subsurface formation are described herein. Some embodiments also generally relate to heaters that have novel components therein. Such heaters may be obtained by using the systems and methods described. Some embodiments also generally relate to systems, methods, and/or processes for treating fluid produced from the subsurface formation.
Abstract:
Systems, methods, processes, and/or heaters for treating a subsurface formation are described herein. Some embodiments also generally relate to heaters that have novel components therein. Such heaters may be obtained by using the systems and methods described. Some embodiments also generally relate to systems, methods, and/or processes for treating fluid produced from the subsurface formation.
Abstract:
The present invention pertains to new methods and apparatuses for the determination of pH of a fluid. Applicants have discovered that ultrasonic spectrophonometry (the study and measurement of acoustic spectra) can be used to distinguish conformational changes of albumin and red blood cells in response to pH. In accordance with the present invention, there is provided a method of determining the pH of a fluid based on a pH-dependent conformation of at least one fluid constituent comprising subjecting the fluid to an ultrasonic pulse; detecting ultrasonic spectral data of the fluid constituent resulting from the ultrasonic pulse; wherein the spectral data varies with pH; and then calculating pH from the spectral data.
Abstract:
Systems, methods, and/or heaters for treating a subsurface formation are described herein. Some embodiments also generally relate to heaters that have novel components therein. Such heaters may be obtained by using the systems and methods described.
Abstract:
A system for treating a subsurface hydrocarbon containing formation is disclosed. The system includes one or more tunnels. The tunnels have an average diameter of at least 1 m. At least one tunnel is connected to the surface. Two or more wellbores extend from at least one of the tunnels into at least a portion of the subsurface hydrocarbon containing formation. At least two of the wellbores contain elongated heat sources configured to heat at least a portion of the subsurface hydrocarbon containing formation such that at least some hydrocarbons are mobilized.