Abstract:
This disclosure provides systems, methods and apparatus for glass packaging of integrated circuit (IC) and electromechanical systems (EMS) devices. In one aspect, a glass package may include a glass substrate, a cover glass and one or more devices encapsulated between the glass substrate and the cover glass. The cover glass may be bonded to the glass substrate with an adhesive such as an epoxy, or a metal bond ring. The glass package also may include one or more signal transmission pathways between the one or more devices and the package exterior. In some implementations, a glass package including an EMS and/or IC device is configured to be directly attached to a printed circuit board (PCB) or other integration substrate by surface mount technology.
Abstract:
This disclosure provides systems, methods and apparatus for glass packaging of integrated circuit (IC) and electromechanical systems (EMS) devices. In one aspect, a glass package may include a glass substrate, a cover glass and one or more devices encapsulated between the glass substrate and the cover glass. The cover glass may be bonded to the glass substrate with an adhesive such as an epoxy, or a metal bond ring. The glass package also may include one or more signal transmission pathways between the one or more devices and the package exterior. In some implementations, a glass package including an EMS and/or IC device is configured to be directly attached to a printed circuit board (PCB) or other integration substrate by surface mount technology.
Abstract:
A mechanical support configuration for a probe card of a wafer test system is provided to increase support for a very low flexural strength substrate that supports spring probes. Increased mechanical support is provided by: (1) a frame around the periphery of the substrate having an increased sized horizontal extension over the surface of the substrate; (2) leaf springs with a bend enabling the leaf springs to extend vertically and engage the inner frame closer to the spring probes; (3) an insulating flexible membrane, or load support member machined into the inner frame, to engage the low flexural strength substrate farther away from its edge; (4) a support structure, such as support pins, added to provide support to counteract probe loading near the center of the space transformer substrate; and/or (5) a highly rigid interface
Abstract:
A mechanical support configuration for a probe card of a wafer test system is provided to increase support for a very low flexural strength substrate that supports spring probes. Increased mechanical support is provided by: (1) a frame around the periphery of the substrate having an increased sized horizontal extension over the surface of the substrate; (2) leaf springs with a bend enabling the leaf springs to extend vertically and engage the inner frame closer to the spring probes; (3) an insulating flexible membrane, or load support member machined into the inner frame, to engage the low flexural strength substrate farther away from its edge; (4) a support structure, such as support pins, added to provide support to counteract probe loading near the center of the space transformer substrate; and/or (5) a highly rigid interface
Abstract:
This disclosure provides systems, methods and apparatus for glass packaging of integrated circuit (IC) and electromechanical systems (EMS) devices. In one aspect, a glass package may include a glass substrate, a cover glass, one or more devices encapsulated between the glass substrate and the cover glass, and bond pads configured to attach to a flexible connector and in electrical communication with an encapsulated device. In some implementations, a flexible connector may be used to electrically connect a device within the glass package to an electrical component, such as an integrated circuit (IC) device or PCB, outside the glass package.
Abstract:
This disclosure provides systems, methods and apparatus for glass packaging of integrated circuit (IC) and electromechanical systems (EMS) devices. In one aspect, fabricating a glass package includes joining a cover glass panel to a glass substrate panel, and singulating the joined panels to form individual glass packages, each including one or more encapsulated devices and one or more signal transmission pathways. In another aspect, a glass package may include a glass substrate, a cover glass and one or more devices encapsulated between the glass substrate and the cover glass.
Abstract:
This disclosure provides systems, methods and apparatus for glass packaging of integrated circuit (IC) and electromechanical systems (EMS) devices. In one aspect, fabricating a glass package includes joining a cover glass panel to a glass substrate panel, and singulating the joined panels to form individual glass packages, each including one or more encapsulated devices and one or more signal transmission pathways. In another aspect, a glass package may include a glass substrate, a cover glass and one or more devices encapsulated between the glass substrate and the cover glass.
Abstract:
This disclosure provides systems, methods and apparatus for combining devices deposited on a first substrate, with integrated circuits formed on a second substrate such as a semiconducting substrate or a glass substrate. The first substrate may be a glass substrate. The first substrate may include conductive vias. A power combiner circuit may be deposited on a first side of the first substrate. The power combiner circuit may include passive devices deposited on at least the first side of the first substrate. The integrated circuit may include a power amplifier circuit disposed on and configured for electrical connection with the power combiner circuit, to form a power amplification system. The conductive vias may include thermal vias configured for conducting heat from the power amplification system and/or interconnect vias configured for electrical connection between the power amplification system and a conductor on a second side of the first substrate.
Abstract:
This disclosure provides systems, methods and apparatus for manufacturing display devices having electronic components mounted within a display device package. In one aspect, the electronic component connects to the exterior of the display device through pads that run below a seal that holds a substrate and a backplate of the display device together. In another aspect the electronic components also connect to an electromechanical device within the display device, as well as connecting to pads that are external to the display device.
Abstract:
This disclosure provides systems, methods and apparatus for manufacturing display devices having electronic components mounted within a display device package. In one aspect, the electronic component connects to the exterior of the display device through pads that run below a seal that holds a substrate and a backplate of the display device together. In another aspect the electronic components also connect to an electromechanical device within the display device, as well as connecting to pads that are external to the display device.