Abstract:
A variety of methods and arrangements for detecting misfire and other engine-related errors are described. In one aspect, a window is assigned to a target firing opportunity for a target working chamber. There is an attempt to fire a target working chamber during the target firing opportunity. A change in an engine parameter (e.g., crankshaft angular acceleration) is measured during the window. A model (e.g., a pressure model) is used to help determine an expected change in the engine parameter during the target firing opportunity. Based on a comparison of the expected change and the measured change in the engine parameter, a determination is made as to whether an engine error (e.g., misfire) has occurred.
Abstract:
A variety of methods and arrangements for implementing a start/stop feature in a skip fire engine control system are described. In one aspect, the implementation of the start/stop feature involves automatically turning off an internal combustion engine under selected circumstances during a drive cycle. A determination is made that the engine should be restarted. During the engine startup period, the engine is operated in a skip fire manner such that a desired engine speed is reached.
Abstract:
In one aspect, a skip fire engine controller is described. The skip fire engine controller includes a skip fire module arranged to determine an operational firing fraction and associated cylinder load for delivering a desired engine output. The skip fire engine controller also includes a firing controller arranged to direct firings in a skip fire manner that delivers the selected operational firing fraction. Various methods, modules, lookup tables and arrangements related to the selection of a suitable operational firing fraction are also described.
Abstract:
In one aspect, a method for mitigating detonation in a skip fire engine control system is described. The working chambers of the engine are operated in a skip fire manner to deliver a desired torque. One or more detonations are detected in the engine. In response to the detection of the one or more detonations, the spark timing for one or more of the working chambers is retarded. Additionally, the firing fraction used to operate the engine is increased. The increase in the firing fraction helps to compensate for torque lost due to the retarding of the spark timing
Abstract:
A variety of methods and arrangements for sharing medical data are described. In one aspect, one or more data streams are received from one or more medical imaging/sensing or other types of devices. Frames are obtained from the streams. In some embodiments, particular frames and/or parts of frames are selectively encrypted. The frames are transmitted to a remote device, where they are rendered and/or displayed at the remote device. In various embodiments, the frames of different streams are synchronized.
Abstract:
A variety of methods and arrangements for detecting misfire in a skip fire engine control system are described. In one aspect, a window is assigned to a target firing opportunity for a target working chamber. A change in an engine parameter is measured during the window. A determination is made as to whether a firing opportunity before the target firing opportunity is a skip or a fire and/or whether a firing opportunity after the target firing opportunity is a skip or a fire. Based at least in part on this skip/fire determination, a determination is made as to whether the target working chamber has misfired. In various embodiments, if the target working chamber is identified as persistently misfiring, the firing sequence is modified so that the target working chamber is deactivated and excluded from the firing sequence. In still other embodiments, a torque model is used to detect engine-related problems
Abstract:
In one aspect of the present invention, a reflector for use in a solar collector will be described. The reflector includes a thin film reflective coating that is positioned on a layer. For example, the layer may be a substrate that physically supports the reflective coating or a protective layer. There are multiple spaced apart pinning regions that are distributed through an interface between the layer and the thin film reflective coating. The pinning regions locally anchor the reflective coating to the layer. Some aspects of the present invention relate to the use of pinning regions in other types of optical or electrical components, such as reflectors, photovoltaic cells, mirrors, windows, etc.
Abstract:
An integrated circuit package is described that includes a substrate, a leadframe and one or more integrated circuits that are positioned between the substrate and the leadframe. Multiple electrical components may be attached to one or both sides of the substrate. The active face of the integrated circuit is electrically and physically connected to the substrate. The back side of the integrated circuit is mounted on a die attach pad of the leadframe. The leadframe includes multiple leads that are physically attached to and electrically coupled with the substrate. A molding material encapsulates portions of the substrate, the leadframe and the integrated circuit. Methods for forming such packages are also described.
Abstract:
Methods for minimizing warpage of a welded foil carrier structure used in the packaging of integrated circuits are described. Portions of a metallic foil are ultrasonically welded to a carrier to form a foil carrier structure. The ultrasonic welding helps define a panel in the metallic foil that is suitable for packaging integrated circuits. Warpage of the thin foil can be limited in various ways. By way of example, an intermittent welding pattern that extends along the edges of the panel may be formed. Slots may be cut to define sections in the foil carrier structure. Materials for the metallic foil and the carrier may be selected to have similar coefficients of thermal expansion. An appropriate thickness for the metallic foil and the carrier may be selected, such that the warpage of the welded foil carrier structure is limited when the foil carrier structure is subjected to large increases in temperature. Foil carrier structures for use in the above methods are also described.
Abstract:
A semiconductor chip package having multiple leadframes is disclosed. Packages can include a first leadframe having a first plurality of electrical leads and a die attach pad having a plurality of tie bars, a second leadframe generally parallel to the first leadframe and having a second plurality of electrical leads, and a mold or encapsulant. Tie bars can be located on three main sides of the die attach pad, but not the fourth main side. Gaps in the first and second plurality of electrical leads can be enlarged or aligned with each other to enable the elimination of mold flash outside the encapsulated region, which can be accomplished with mold cavity bar protrusions. Additional components can include a primary die, a secondary die, an inductor and/or a capacitor. The first and second leadframes can be substantially stacked atop one another, and one or both leadframes can be leadless leadframes.