Abstract:
A system for performing quality control for nucleic acid sample sequencing is disclosed. The system comprises a set of solid supports, each solid support having attached thereto a plurality of nucleic acid sequences, wherein the set comprises plural groups of solid supports and each group contains solid supports having the same nucleic acid sequences attached thereto. The nucleic acid sequences of each group differ from each other. The nucleic acid sequences are synthetically derived, and the nucleic acids sequences are designed such that the nucleic acid sequences produce a predefined pattern of detectable signals during a sequencing run. A method of preparing a quality control for performing nucleic acid sample sequencing, a method of validating a nucleic acid sequencing instrument during a nucleic acid sequencing experiment, and a method of processing nucleic acid sequencing data during a nucleic acid sequencing experiment are also disclosed.
Abstract:
Various embodiments described in the application relate to an apparatus, system, and method for generating, within a conduit, discrete volumes of one or more fluids that are immiscible with a second fluid. The discrete volumes can be used for biochemical or molecular biology procedures involving small volumes, for example, microliter-sized volumes, nanoliter-sized volumes, or smaller. The system can comprise an apparatus comprising at least one conduit operatively connected to one or more pumps for providing discrete volumes separated from one another by a fluid that is immiscible with the fluid(s) of the discrete volumes, for example, aqueous immiscible-fiuid-discrete volumes separated by an oil.
Abstract:
A system for performing quality control for nucleic acid sample sequencing is disclosed. The system comprises a set of solid supports, each solid support having attached thereto a plurality of nucleic acid sequences, wherein the set comprises plural groups of solid supports and each group contains solid supports having the same nucleic acid sequences attached thereto. The nucleic acid sequences of each group differ from each other. The nucleic acid sequences are synthetically derived, and the nucleic acids sequences are designed such that the nucleic acid sequences produce a predefined pattern of detectable signals during a sequencing run. A method of preparing a quality control for performing nucleic acid sample sequencing, a method of validating a nucleic acid sequencing instrument during a nucleic acid sequencing experiment, and a method of processing nucleic acid sequencing data during a nucleic acid sequencing experiment are also disclosed.
Abstract:
Methods of modifying a nucleophilic surface of a support are described. The methods involve reacting a multifunctional electrophilic reagent with nucleophilic groups on the surface of the support. The resulting electrophilic surface can be used for the covalent attachment of particles (e.g., beads) having nucleophilic functional groups. For example, nucleic acid templates with nucleophilic (e.g., amine) groups can be attached to a surface of the particles. The nucleophilic groups on the nucleic acid templates can then be used to attach the particles to the modified surface of the support. The resulting support-bound particles can be used to analyze (e.g., sequence) the nucleic acid templates on the particles.
Abstract:
An enrichment module and method are provided for enriching a population of templated beads and separating them from non-templated beads. The method can include hybridizing a templated bead with an enrichment bead to form a complex, trapping the complex in a filtration medium, washing non-templated beads through the filtration medium while retaining the complex, and then eluting the templated bead from the complex. The module can include a column for enrichment and filtration material exhibiting desired size- exclusion properties.
Abstract:
Methods of modifying a nucleophilic surface of a support are described. The methods involve reacting a multifunctional electrophilic reagent with nucleophilic groups on the surface of the support. The resulting electrophilic surface can be used for the covalent attachment of particles (e.g., beads) having nucleophilic functional groups. For example, nucleic acid templates with nucleophilic (e.g., amine) groups can be attached to a surface of the particles. The nucleophilic groups on the nucleic acid templates can then be used to attach the particles to the modified surface of the support. The resulting support-bound particles can be used to analyze (e.g., sequence) the nucleic acid templates on the particles.
Abstract:
A system for performing quality control for nucleic acid sample sequencing is disclosed. The system has a set of solid supports, each support having attached thereto a plurality of nucleic acid sequences. The set has plural groups of solid supports and each group contains solid supports having the same nucleic acid sequences attached thereto. The nucleic acid sequences of each group differ from each other. The nucleic acid sequences are synthetically derived. A method of preparing a quality control for performing nucleic acid sample sequencing and a method of validating a nucleic acid sequencing instrument are also disclosed.
Abstract:
The present invention relates to sample presentation devices useful in performing analytical measurements. These devices have been configured to enable various aspects of liquid handling such as: retention, storage, transport, concentration, positioning, and transfer. Additionally, these devices can enhance the detection and characterization of analytes. The sample presentation devices of the present invention are comprised of one or more substrates having a plurality of zones of differing wettability. Methods of analyzing samples using the sample presentation device of the invention, as well as methods of making the sample presentation devices are disclosed.
Abstract:
A system for performing quality control for nucleic acid sample sequencing is disclosed. The system has a set of solid supports, each support having attached thereto a plurality of nucleic acid sequences. The set has plural groups of solid supports and each group contains solid supports having the same nucleic acid sequences attached thereto. The nucleic acid sequences of each group differ from each other. The nucleic acid sequences are synthetically derived. A method of preparing a quality control for performing nucleic acid sample sequencing and a method of validating a nucleic acid sequencing instrument are also disclosed.