Abstract:
A method of creating an improved sensitivity capacitive fingerprint sensor involves forming vias from a first side of a sensor chip having an array of capacitive sensors, making the vias electronically conductive, and attaching a cover plate over the first side of the sensor chip spaced from the sensor chip by a distance of less than 25μm. An improved sensitivity capacitive fingerprint sensor has a capacitive sensor array including multiple sensor cells and electrically conductive, through-chip vias extending from connection points for sensor cell circuitry to a back side of the capacitive sensor array, a chip including active detection circuitry and electrical connection points, the electrical connection points being respectively connected to corresponding ones of the sensor cell circuitry connection points, and a cover plate, disposed above the sensor cells at a spacing of less that 25μm.
Abstract:
CMOS power amplifiers (PAs) are disclosed having one or more integrated one-time programming (OTP) memories that are utilized to control at least in part operation of the CMOS PAs. The integrated OTP memories within the CMOS power amplifiers (PAs) allow adjustments, such as one-time factory trimming, of CMOS PA integrated circuits to optimize or improve performance. With this capability, for example, the tuning and biasing of stages within a multi-stage amplifier within a CMOS PA can be measured during factory test and adjusted by setting one or more bits in the OTP memories, as desired. Further, the operation of other circuitry within the PA can also be controlled at least in part with parameter settings stored in the OTP memories.
Abstract:
A method of creating an improved sensitivity capacitive fingerprint sensor involves forming vias from a first side of a sensor chip having an array of capacitive sensors, making the vias electronically conductive, and attaching a cover plate over the first side of the sensor chip spaced from the sensor chip by a distance of less than 25µm. An improved sensitivity capacitive fingerprint sensor has a capacitive sensor array including multiple sensor cells and electrically conductive, through-chip vias extending from connection points for sensor cell circuitry to a back side of the capacitive sensor array, a chip including active detection circuitry and electrical connection points, the electrical connection points being respectively connected to corresponding ones of the sensor cell circuitry connection points, and a cover plate, disposed above the sensor cells at a spacing of less that 25µm.
Abstract:
A method involves stacking a first chip, comprising high-speed circuitry formed using a first fabrication process, together with a wafer comprising multiple iterations of low-speed circuitry formed using a second fabrication process, hybridizing the first chip to the wafer so as to form electrical connections between the first chip and one of the iterations of the low-speed circuitry so as to form a hybridized unit and dicing the unit from the wafer.
Abstract:
A method of creating a unified chip involves performing front-end processing on a first wafer, the front end processing creating multiple devices on the wafer, performing back- end processing on a second wafer, the back end processing creating layers of interconnected metal traces arranged to interconnect at least some of the multiple devices to each other, and bonding the first wafer to the second wafer such that the multiple devices on the first wafer are interconnected to each other by the metal traces of the second wafer.
Abstract:
CMOS power amplifiers (PAs) are disclosed having one or more integrated one-time programming (OTP) memories that are utilized to control at least in part operation of the CMOS PAs. The integrated OTP memories within the CMOS power amplifiers (PAs) allow adjustments, such as one-time factory trimming, of CMOS PA integrated circuits to optimize or improve performance. With this capability, for example, the tuning and biasing of stages within a multi-stage amplifier within a CMOS PA can be measured during factory test and adjusted by setting one or more bits in the OTP memories, as desired. Further, the operation of other circuitry within the PA can also be controlled at least in part with parameter settings stored in the OTP memories.
Abstract:
A method involves stacking a first chip, comprising high-speed circuitry formed using a first fabrication process, together with a wafer comprising multiple iterations of low-speed circuitry formed using a second fabrication process, hybridizing the first chip to the wafer so as to form electrical connections between the first chip and one of the iterations of the low-speed circuitry so as to form a hybridized unit and dicing the unit from the wafer.
Abstract:
A method of creating a unified chip involves performing front-end processing on a first wafer, the front end processing creating multiple devices on the wafer, performing back- end processing on a second wafer, the back end processing creating layers of interconnected metal traces arranged to interconnect at least some of the multiple devices to each other, and bonding the first wafer to the second wafer such that the multiple devices on the first wafer are interconnected to each other by the metal traces of the second wafer.