Abstract:
The present disclosure generally relates to a mechanism for making a MEMS switch that can switch large electrical powers. Extra landing electrodes are employed that provide added electrical contact along the MEMS device so that when in contact current and heat are removed from the MEMS structure close to the hottest points.
Abstract:
The present invention generally relates to a mechanism for testing a MEMS hysteresis. A power management circuit may be coupled to the electrodes that cause the movable plate that is disposed between the electrodes in a MEMS device to move. The power management circuit may utilize a charge pump, a comparator and a resistor ladder.
Abstract:
Embodiments disclosed herein generally include using a large number of small MEMS devices to replace the function of an individual larger MEMS device or digital variable capacitor. The large number of smaller MEMS devices perform the same function as the larger device, but because of the smaller size, they can be encapsulated in a cavity using complementary metal oxide semiconductor (CMOS) compatible processes. Signal averaging over a large number of the smaller devices allows the accuracy of the array of smaller devices to be equivalent to the larger device. The process is exemplified by considering the use of a MEMS based accelerometer switch array with an integrated analog to digital conversion of the inertial response. The process is also exemplified by considering the use of a MEMS based device structure where the MEMS devices operate in parallel as a digital variable capacitor.
Abstract:
The present disclosure generally relates to a MEMS DVC utilizing one or more MIM capacitors located in the anchor of the DVC and an Ohmic contact located on the RF-electrode. The MIM capacitor in combination with the ohmic MEMS device ensures that a stable capacitance for the MEMS DVC is achieved with applied RF power.
Abstract:
The present invention generally relates to a method and apparatus for damping a plate electrode or switching element in a MEMS DVC device. A resistor disposed between a waveform controller and the electrodes of the MEMS DVC causes the voltage to increase while capacitance decreases during the time that the plate electrode is moving. Due to the increase in voltage and decrease in capacitance, the electrostatic force that resists the plate electrode movement away from an electrode increases, which in turn dampens the movement of the plate electrode.
Abstract:
The present invention generally relates to an architecture for isolating an RF MEMS device from a substrate and driving circuit, series and shunt DVC die architectures, and smaller MEMS arrays for high frequency communications. The semiconductor device has one or more cells with a plurality of MEMS devices therein. The MEMS device operates by applying an electrical bias to either a pull-up electrode or a pull-down electrode to move a switching element of the MEMS device between a first position spaced a first distance from an RF electrode and a second position spaced a second distance different than the first distance from the RF electrode. The pull-up and/or pull-off electrode may be coupled to a resistor to isolate the MEMS device from the substrate.
Abstract:
The present invention generally relates to methods for increasing the lifetime of MEMS devices by reducing the landing velocity on switching by introducing gas into the cavity surrounding the switching element of the MEMS device. The gas is introduced using ion implantation into a cavity close to the cavity housing the switching element and connected to that cavity by a channel through which the gas can flow from one cavity to the other. The implantation energy is chosen to implant many of the atoms close to the inside roof and floor of the cavity so that on annealing those atoms diffuse into the cavity. The gas provides gas damping which reduces the kinetic energy of the switching MEMS device which then should have a longer lifetime.
Abstract:
The present invention generally relates to a MEMS device and a method of manufacture thereof. The RF electrode, and hence, the dielectric layer thereover, has a curved upper surface that substantially matches the contact area of the bottom surface of the movable plate. As such, the movable plate is able to have good contact with the dielectric layer and thus, good capacitance is achieved.
Abstract:
The present invention generally relates to a MEMS DVC. The MEMS DVC has an RF electrode and is formed above a CMOS substrate. To reduce noise in the RF signal, a poly-resistor that is connected between a waveform controller and the electrodes of the MEMS element, may be surrounded by an isolated p-well or an isolated n-well. The isolated well is coupled to an RF ground shield that is disposed between the poly-resistor and the MEMS element. Due to the presence of the isolated well that surrounds the poly-resistor, the substrate resistance does not influence the dynamic behavior of each MEMS element in the MEMS DVC and noise in the RF signal is reduced.
Abstract:
The present invention generally relates to techniques and structures that permit a CSP RF-MEMS to be assembled without the need for a solder mask. By having a mesa above the substrate, and having the chip soldered to traces on top of the mesa, the traces do not need a solder mask thereover outside of the mesa. If any solder mask is present, the solder mask is present only on top of the mesa and not on the sidewalls of the mesa or on the substrate.