Abstract:
An electronic device employs a seal member to seal a battery pack to a housing member to prevent contaminants from entering into a battery bay. The electronic device includes a housing member having an exterior surface a portion of which defines a recess, an electronic assembly contained inside the housing member, and an battery pack received in the recess in the exterior surface of the housing member and electrically connected to the electronic assembly inside the housing member. The seal member engages the battery pack and the housing member along an outer circumference of the battery pack and an inner circumference of the recess such that the seal member seals the gap between the outer circumference of the battery pack and the inner circumference of the recess, thereby preventing contaminants from an external environment from entering into an interior of the recess through the gap.
Abstract:
A three-dimensional micro-electromechanical (MEM) varactor is described wherein a movable beam (50) and fixed electrodes (51) are respectively fabricated on separate substrates coupled to each other. The movable beam with comb-drive electrodes are fabricated on the "chip side" while the fixed bottom electrode is fabricated on a separated substrate "carrier side". Upon fabrication of the device on both surfaces of the substrate, the chip side device is diced and "flipped over", aligned and joined to the "carrier" substrate to form the final device. Comb-drive (fins) electrodes are used for actuation while the motion of the electrode provides changes in capacitance. Due to the constant driving forces involved, a large capacitance tuning range can be obtained. The three dimensional aspect of the device avails large surface area. When large aspect ratio features are provided, a lower actuation voltage can be used. Upon fabrication, the MEMS device is completely encapsulated, requiring no additional packaging of the device. Further, since alignment and bonding can be done on a wafer scale (wafer scale MEMS packaging), an improved device yield can be obtained at a lower cost.
Abstract:
A fully integrated wireless spread-spectrum sensor incorporating all elements of an "intelligent" sensor on a single circuit chip is capable of telemetering data to a receiver. Synchronous control of all elements of the chip provides low-cost, low-noise, and highly robust data transmission, in turn enabling the use of low-cost monolithic receivers.
Abstract:
An IC card includes at least one plastic layer (915), a battery (865) and at least one electronic device (980) embedded in the plastic layer (915). The battery (865) is electrically connected to the electronic device (980) for providing power to the device (980). The battery (865) includes an anode, a cathode, and at least one polymer matrix electrolyte (PME) separator disposed between the anode and the cathode. The PME separator includes a polyimide, at least one lithium salt and at least one solvent all intermixed. The PME is substantially optically clear and stable against high temperature and pressure, such as processing conditions typically used in hot lamination processing or injection molding.
Abstract:
An semiconductor device package (10) includes a semiconductor device (die) (12) and passive devices (14) electrically connected to a common lead frame (17). The lead frame (17) is formed from a stamped and/or etched metallic structure and includes a plurality of conductive leads (16) and a plurality of interposers (20). The passive devices (14) are electrically connected to the interposers (20), and I/O pads (22) on the die (12) are electrically connected to the leads (16). The die (12) , passive devices (14), and lead frame (17) are encapsulated in a molding compound (28), which forms a package body (30). Bottom surfaces (38) of the leads (16) are exposed at a bottom face (34) of the package (10).
Abstract:
A low cost packaging technique for microelectronic circuit chips fixes a die within an opening in a package core. At least one metallic build up layer is then formed on the die/core assembly and a grid array interposer unit is laminated to the build up layer. The grid array interposer unit can then be mounted within an external circuite using any of a plurality of mounting technologies (e.g., ball grid array (BGA), land grid array (LGA), pin grid array (PGA), surface mount technology (SMT), and/or others). In one embodiment, a single build up layer is formed on the die/core cassembly before lamination of the interposer.
Abstract:
The invention is a method of applying an array (134) of caps to a wafer (144) of semiconductor material which includes a plurality of microfabricated devices (146). The method includes applying the array (134) of first caps substantially simultaneously to one side of the wafer (144), bonding the array (134) of caps to the wafer(144) and then separating the wafer into individual packages (148).
Abstract:
An apparatus has first and second wafers, and a conductive rim between the first and second wafers. The conductive rim electrically and mechanically connects the first and second wafers. In addition, the conductive rim and second wafer at least in part seal an area on the surface of the first wafer.
Abstract:
A system to package high performance microelectronic devices, such as processors, responds to component transients. In one embodiment, the system includes a decoupling capacitor that is disposed between a Vcc electrical bump and a Vss electrical bump. The decoupling capacitor has Vcc and Vss terminals. The Vcc and Vss terminals share electrical pads with the Vcc electrical bump and the Vss electrical bump. A simple current loop is created that improves the power delivery for the system.
Abstract:
A semiconductor device includes a semiconductor bare chip and a board member with a thin-film structure capacitor. The semiconductor bare chip has a power supply terminal and a grounding terminal on the back thereof, and mounted on a circuit board by flip-chip bonding. The board member comprises a board and a thin-film structure capacitor provided on the board. The capacitor has terminals corresponding to the power supply terminal and grounding terminal of the semiconductor bare chip thereon. The side of the board member where the capacitor is provided is bonded to the back of the semiconductor bare chip. The terminals of the capacitor are electrically connected to the power supply terminal and grounding terminal of the semiconductor bare chip.