Abstract:
Dispositif de caractérisation de surfaces caractérisé en ce qu'il comprend : -un capillaire (C 1 ) dit d'imagerie pour guider un rayonnement électromagnétique proche ou moyen infrarouge, visible, ultraviolet ou X depuis ou vers une surface (SE) à caractériser, ledit capillaire ayant une extrémité dite avant (EA C1 ), orientée vers ladite surface et présentant une ouverture de diamètre micrométrique ou sub-micrométrique; et -un oscillateur micromécanique (DP) pour induire un mouvement oscillatoire dudit capillaire par rapport à ladite surface. Utilisation d'un tel dispositif pour acquérir simultanément une information topographique et une information spectroscopique résolue spatialement sur une surface à caractériser.
Abstract:
Nanowires that may be utilized in microscopy, for example atomic force microscopy (AFM), as part of an AFM probe, as well as for other uses, are disclosed. The nanowires may be formed from a Group III nitride such as an epitaxial layer that may be or include gallium nitride, indium nitride, aluminum nitride, and an alloy of these materials. During use of the AFM probe to measure a topography of a test sample surface, the nanowire can activated and caused to lase and emit a light, thereby illuminating the surface with the light. In an implementation, the light can be collected by the AFM probe itself, for example through an optical fiber to which the nanowire is attached.
Abstract:
Methods and systems for operating an apertureless microscope for observing one or more features to a molecular sensitivity on objects are described. More particularly, the method includes moving a tip of a probe coupled to a cantilever in a vicinity of a feature of a sample, which emits one or more photons at a detected rate relative to a background rate of the sample based upon the presence of the tip of the probe in the vicinity of the feature. The method modifies the detected rate of the feature of the sample, whereupon the modifying of the detected rate causes the feature of the sample to enhance relative to background rate of the feature.
Abstract:
The present invention refers to a method for modifying a scanning probe microscope (SPM) tip, a modified SPM tip obtainable by the method, a modified SPM tip, to the use of the modified SPM tip, to a scanning probe comprising the modified SPM tip and to the use of the scanning probe.
Abstract:
The present disclosure provides a procedure and an apparatus to obtain the absorption profiles of molecular resonance with ANSOM. The method includes setting a reference field phase to ϕ = 0.5π relative to the near-field field, and reference amplitude A ≥ 5|α eff |. The requirement on phase precision is found to be
Abstract:
A low-loss optical micro cantilever (10) comprises a support (1), an optical waveguide (2), an opaque film (3), a reflective film (4), a chip (5) with a pointed end, a minute opening (6) in the pointed of the chip (5), and a reflective mirror (7) for directing the light (H) from an optical input/output end (8) of the optical waveguide (2) toward the minute opening (6).
Abstract:
The invention relates to a system suitable for its use in scanning probe microscopy, such as tip-enhanced Raman spectroscopy or magnetic force microscopy, that comprises: a tip (1) comprising an apex (1'); a plurality of nanoparticles (2, 2') attached to the tip (1); having a size between 0.5 and 100 nm. Advantageously, the plurality of nanoparticles (2, 2') comprises a cluster (2") of one or more nanoparticles (2') disposed at the apex (T) of the tip (1), wherein the cluster (2") is spaced from any other nanoparticle (2) of the tip (1) at least a distance d of 0.5 nm. The invention also relates to a method for obtaining such system through a controlled thermal treatment that exploits the intrinsic properties of nanoparticles.
Abstract:
Methods and systems for operating an apertureless microscope for observing one or more features to a molecular sensitivity on objects are described. More particularly, the method includes moving a tip of a probe coupled to a cantilever in a vicinity of a feature of a sample, which emits one or more photons at a detected rate relative to a background rate of the sample based upon the presence of the tip of the probe in the vicinity of the feature. The method modifies the detected rate of the feature of the sample, whereupon the modifying of the detected rate causes the feature of the sample to enhance relative to background rate of the feature.
Abstract:
Es wird ein Verfahren zur Herstellung einer Apertur (10) in einem Halbleitermaterial (12) mit folgenden Schritten beschrieben: Bereitstellen eines Halbleiterwafers (14), beispielsweise eines (100)-orientierten Siliziumwafers mit einer Oberfläche (16) und einer Unterfläche (18), Erzeugen einer Vertiefung (20) mit einer Seitenwand (22) in der Oberfläche (16) des Halbleiterwafers (14) durch partielles Anätzen der Oberfläche (16), wobei die Vertiefung (20) einen der Unterfläche (18) zugewandten, geschlossenen Bodenbereich (24) bevorzugt mit insbesondere einer konvexen oder insbesondere einer konkaven Ecke oder Kante oder dergleichen Krümmung aufweist. Nach Aufbringen einer Oxidschicht (26) auf dem Halbleitermaterial (12) wenigstens im Bereich der Vertiefung (20) durch Oxidation des Halbleitermaterials (12), wobei die Oxidschicht (26) im Bodenbereich (24) bevorzugt eine Inhomogenität (28) aufweist, wird das Halbleitermaterial (14) an der Unterfläche (18) des Halbleiterwafers (14) selektiv bis zum Freilegen wenigstens der im Bodenbereich (24) befindlichen Oxidschicht (26) rückgeätzt. Anschliessend wird die freigelegte Oxidschicht (26) bis wenigstens zu deren Durchtrennung angeätzt. Weiterhin sind auch eine insbesondere nach diesem Verfahren hergestellte Apertur (10) in einem Halbleitermaterial (12) sowie verschiedene Verwendungen einer solchen Apertur (10) beschrieben.
Abstract:
An optical waveguide probe which is formed into a hook shape by a manufacturing method using a silicon process and which emits a light from its tip for detection, comprising an optical waveguide (1) which is formed into a hook shape, the probe needle part (5) of which is sharpened and which is made of dielectric, and a board (2) supporting the optical waveguide (1) laminated on the board (2). The optical waveguide (1) is composed of a core (8) through which a light is transmitted and a cladding (9) whose refractive index is smaller than that of the core (8).