Abstract:
Embodiments of the present disclosure provide methods, apparatuses, systems and computer readable media for managing a tool in a robot system. In a method, a plurality of arm positions of a robot arm of the robot system are obtained when the tool is placed under a posture on a surface of a calibration object for calibrating the tool, here the posture represents rotation parameters of the robot arm. A center of the calibration object is determined based on the plurality of arm positions. A reference position of the robot arm is generated for calibrating the tool based a position of the center and the posture. Further, embodiments of present disclosure provide apparatuses, systems, and computer readable media for managing a tool in a robot system. With these embodiments, reference positions for calibrating the tool may be obtained in an easy and effective way without complex manual operations.
Abstract:
An atomic force microscope (AFM) and method of operating the same includes a separate Z height sensor to measure, simultaneously with AFM system control, probe sample distance, pixel-by-pixel during AFM data acquisition. By mapping the AFM data to low resolution data of the Z height data, a high resolution final data image corrected for creep is generated in real time.
Abstract:
The present invention relates to microscopy and spectroscopy systems, particularly to confocal microscopy and spectroscopy apparatus. Current confocal microscopes are expensive and difficult to set up and calibrate. The confocal microscope described in this document, comprises a housing, which may be printed, and which includes mounts for receiving optical and other components of the microscope. The positions of the mounts are pre-determined so as to obviate the need for complex calibration of the components. The components and optical path lengths are selected in order to optimise the size of the microscope.
Abstract:
Es wird ein Verfahren zum Kalibrieren eines heterodynen elektrostatischen Kraftmikroskops mit einer Probenaufnahme (1) und einer der Probenaufnahme (1) gegenüberliegenden Messsonde (3) beschrieben, die mit einer amplitudenmodulierten, hochfrequenten Wechselspannung beaufschlagt wird, wobei die Schwingungen der Messsonde (3) durch einen Laserdetektor (9) erfasst und dessen Ausgangssignal einem Lock-in-Verstärker (10) zur Bereitstellung eines vom Kapazitätsgradienten zwischen Probe (2) und Messsonde (3) abhängigen Signalanteils zugeführt wird. Um einfache Kalibrierbedingungen zu schaffen wird vorgeschlagen, dass die Amplitude des vom Kapazitätsgradienten zwischen Probe (2) und Messsonde (3) abhängigen Signalanteils durch eine Steuerung der Amplitude der hochfrequenten Wechselspannung des Signalgenerators (6) auf einen konstanten Wert geregelt wird.
Abstract:
A method of carrying out sub-resonant tapping in an atomic force microscope includes causing a probe that is disposed above a sample to be translated in a direction parallel to a horizontal plane defined by the sample and to oscillate in a vertical direction that is perpendicular to the horizontal plane about an equilibrium line that is separated from the horizontal plane by a vertical offset. As a result, the probe repeatedly taps a surface of the sample. Each tap begins with a first contact of the probe on the surface followed by a progressive increase in force exerted by the sample on the probe until a peak force is attained. The vertical offset is controlled by relying at least in part on a feature other than the peak force as a basis for controlling the vertical offset.
Abstract:
A scanning probe microscope's probe tip dimensions as they exist or existed for a certain data or measurement are inferred based on probe activity taking place since a probe characterization procedure was performed. The inferred probe tip dimensions can be used to correct nanoscale measurements taken by the probe to account for changes in the probe's geometry such as wear.
Abstract:
A calibration device is disclosed. A platform has a substantially planar surface suitable for the landing of an AFM cantilever tip, one or more supporting legs arranged to provide sprung resistance to the platform and a capacitive sensor for measuring the combined spring constant of the one or more supporting legs with respect to displacement substantially perpendicular to said substantially planar surface.
Abstract:
A system and method for measuring, analysis, removal, addition or imaging of material using nanostructures in conjunction with mechanical, electromagnetic (optical) and electrical means. Techniques for fabricating such nanostructures and techniques for combining these elements in a system which can modify bulk or large area objects such as silicon wafers, and masks for lithography.
Abstract:
A method for determining a geometry of a measuring tip (100) for a scanning probe microscope is proposed. The method comprises the steps of: a) generating (S1) at least one test structure (200), which has elevations (210) alternating with depressions (220) in a first direction (I), wherein the elevations (210) and depressions (220) are aligned parallel to one another in a second direction (II) perpendicular to the first direction (I); b) scanning (S2) the test structure (200) with the measuring tip (100) to ascertain a profile (300) of the test structure (200); and c) determining (S3) the geometry of the measuring tip (100) on the basis of the ascertained profile (300).
Abstract:
Probe systems and methods of characterizing optical coupling between an optical probe of a probe system and a calibration structure. The probe systems include a probe assembly that includes an optical probe, a support surface configured to support a substrate, and a signal generation and analysis assembly configured to generate an optical signal and to provide the optical signal to the optical device via the optical probe. The probe systems also include an electrically actuated positioning assembly, a calibration structure configured to receive the optical signal, and an optical detector configured to detect a signal intensity of the optical signal. The probe systems further include a controller programmed to control the probe system to generate a representation of signal intensity as a function of the relative orientation between the optical probe and the calibration structure. The methods include methods of operating the probe systems.