Abstract:
A printed wiring board includes a glass substrate provided with through-holes, conductive patterns provided on both surfaces of said glass substrate in such a manner as to be made conductive to each other via said through-holes, and a sealing member composed of a silver paste containing an epoxy resin as a binder provided to fill said through-holes. This printed wiring board is advantageous in that circuit parts can be connected to each other without use of any planar special region and moisture does not reach the circuit parts through the printed wiring board. A display apparatus capable of stably displaying pictures for a long-period of time is provided by using the printed wiring board.
Abstract:
Disclosed herein is a display to be applied to a digital switch. This display includes a casing (1) formed of a box-type casing (2) and a cover (3), a display element (8) facing a display window (2b) accommodated in the casing (1), a printed wiring board (9) for supporting the display element (8), and a printed wiring board (14) which is connected to the printed wiring board (9) and on which a control circuit (16) for displaying an external input signal on the display element (8), and the like are mounted. At the front portion of the casing (1) are formed frames (11a and 11b) extending over a display face (81) of the display element (8), and thus a portion of the printed wiring board (9) which is located at the outer periphery of the display element (8) cannot be seen from the outside. A conductive pattern (18) for discharging a static electricity is provided on the printed wiring board (9), corresponding to a region in which the frames (11a, 11b) engaged with each other. The frames (11a, 11b) have adhesive tapered faces, and thus a static electricity is hard to enter the display from the outside. Thus, it flows out of the display through the conductive pattern (18) even if it enters the display.
Abstract:
A flexible printed circuit is described that includes a flexible supporting substrate having a first face and a second face. A conductive material is deposited by vacuum deposition on at least one of the first face or the second face of the flexible supporting substrate. A flexible conductive circuit is formed on the conductive material by electrical discharge machining. The flexible conductive circuit defines a plurality of electrical component placement circuits to which electrical components may be attached. The flexible printed circuit can be rolled or folded. The flexible printed circuit can also be made in sizes much larger than is currently possible with other competing technologies.
Abstract:
Provided are an electronic device and a manufacturing method therefor such that, when connecting a first electronic component configured to have a step near an external connection terminal to a second electronic component via wiring, the size increase of a manufacturing device can be avoided, wiring can be carried out at a low-cost, and the reliability of the wiring connections can be improved. An LCD (10) and an IC (20) are embedded and exposed in a resin molding (30) in such a manner that a connection electrode (13a) of the LCD (10) and an electrode of the IC (20) are positioned on the same plane.
Abstract:
A display device using a semiconductor light emitting device and a method of fabricating the semiconductor light emitting device are disclosed. The display device includes a substrate, a plurality of first electrodes disposed on the substrate, an anisotropic conductive film disposed on the substrate provided with the first electrodes, a plurality of semiconductor light emitting devices disposed on the anisotropic conductive film layer, electrically connected to the first electrodes, and constituting individual pixels, and a plurality of second electrodes disposed between the semiconductor light emitting devices and electrically connected to the semiconductor light emitting devices. Thus, alignment of the semiconductor light emitting device array may be simplified by use of an anisotropic conductive film Due to excellent brightness, the semiconductor light emitting devices, which are small in size, may form individual sub-pixels. In addition, the distance between the semiconductor light emitting devices is sufficiently long to embody a flexible display device.
Abstract:
A rimless display device and a preparation method thereof, the rimless display device comprises a flexible substrate formed on a rigid base plate (1), the flexible substrate is provided with a display region (2) having an organic light-emitting layer arranged therein and a non-display region (3), wherein, after a part of the rigid base plate at a location corresponding to the non-display region (3) is removed, the non-display region (3) of the flexible substrate is fixed on a lateral surface or a rear surface of the display device after the non-display region (3) is folded. This rimless display device can achieve a real rimless display screen body, thereby further increasing the screen proportion and greatly improving the view effect.
Abstract:
The present application relates to a conductive transparent film. The conductive transparent film comprises an undercoating layer, an anti-crack buffer layer, and a conductive layer. The conductive transparent film may have not only excellent mechanical strength, but also have a fast response speed when applied to a touch panel.
Abstract:
A display device includes a substrate, conductive pads arranged on the substrate over a plurality of rows, and a drive circuit chip including bumps arranged over a plurality of rows to be electrically connected with the conductive pads, and the conductive pads arranged in a same row are arranged in parallel, and the bumps arranged in a same row are arranged in a zigzag form so as to be partially shifted.
Abstract:
The present invention relates to a method for producing a flexible substrate. According to the method of the present invention, a flexible substrate layer can be easily separated from a carrier substrate even without the need for laser or light irradiation so that a device can be prevented from deterioration of reliability and occurrence of defects caused by laser or light irradiation. In addition, according to the method of the present invention, a flexible substrate can be continuously produced in an easier manner based on a roll-to-roll process.