Abstract:
Die Erfindung betrifft ein Verfahren zum Herstellen einer Vorrichtung, wobei ein Substrat (10) bereitgestellt wird, das eine Aussparung (11) aufweist. In die Aussparung (11) wird eine Vielzahl loser Partikel (12) eingebracht. Ein erster Anteil (1) der Partikel (12) wird, unter Verwendung eines Beschichtungsprozesses, der eine Eindringtiefe von einer Öffnung (11 d) der Aussparung (11) ausgehend entlang einer Tiefenrichtung (14) in die Aussparung (11) hinein aufweist, beschichtet, so dass der erste Anteil (1) zu einer verfestigten porösen Struktur (13) verbunden wird. Die Eindringtiefe des Beschichtungsprozesses in die Aussparung (11) wird so eingestellt, dass ein zweiter Anteil (2) der Partikel (12) nicht mittels der Beschichtung verbunden wird, und so dass der verfestigte erste Anteil (1) der Partikel (12) zwischen dem zweiten Anteil (2) der Partikel (12) und einer Umgebung (15) der Aussparung (11) angeordnet ist. Erfindungsgemäß wird der zweite Anteil (2) der Partikel (12) zumindest teilweise aus der Aussparung (11) entfernt.
Abstract:
A multi-device module (61), comprising: a first substrate (23), which houses a first MEMS transducer (21, 1), designed to transduce a first environmental quantity into a first electrical signal, and an integrated circuit (22, 22'), coupled to the first MEMS transducer for receiving the first electrical signal; a second substrate (49), which houses a second MEMS transducer (41, 42), designed to transduce a second environmental quantity into a second electrical signal; and a flexible printed circuit (36), mechanically connected to the first and second substrates and electrically coupled to the integrated circuit and to the second MEMS transducer so that the second electrical signal flows, in use, from the second MEMS transducer to the integrated circuit.
Abstract:
A method of fabricating a MEMS device includes depositing an expandable material into a first recess of a cap wafer. The cap wafer includes a plurality of walls that surround and define the first recess and a second recess. The cap wafer is bonded to a MEMS wafer including a first MEMS device and a second MEMS device. The first MEMS device is encapsulated in the first recess, and the second MEMS device is encapsulated in the second recess. The expandable material is then heated to at least an activation temperature to cause the expandable material to expand after the first recess has been sealed. The expansion of the expandable material causes a reduction in volume of the first recess.
Abstract:
In one embodiment, a sensor includes a rigid wafer outer body, a first cavity located within the rigid wafer outer body, a first spring supported by the rigid wafer outer body and extending into the first cavity, a second spring supported by the rigid wafer outer body and extending into the first cavity, and a first sensor structure supported by the first spring and the second spring within the first cavity.
Abstract:
Angular accelerometers are described, as are systems employing such accelerometers. The angular accelerometers may include a proof mass and rotational acceleration detection beams directed toward the center of the proof mass. The angular accelerometers may include sensing capabilities for angular acceleration about three orthogonal axes. The sensing regions for angular acceleration about one of the three axes may be positioned radially closer to the center of the proof mass than the sensing regions for angular acceleration about the other two axes. The proof mass may be connected to the substrate though one or more anchors.
Abstract:
A MEMS device, such as an accelerometer or gyroscope, fabricated in interconnect metallization compatible with a CMOS microelectronic device. In embodiments, a proof mass has a first body region utilizing a thick metal layer that is separated from a thin metal layer. The thick metal layer has a film thickness that is significantly greater than that of the thin metal layer for increased mass. The proof mass further includes a first sensing structure comprising the thin metal layer, but lacking the thick metal layer for small feature sizes and increased capacitive coupling to a surrounding frame that includes a second sensing structure comprising the thin metal layer, but also lacking the thick metal layer. In further embodiments, the frame is released and includes regions with the thick metal layer to better match film stress-induced static deflection of the proof mass.