摘要:
A plasma bridge neutraliser (10) comprising: a cathode (2); an anode (1) configured to be arranged annularly with respect to the cathode and spaced therefrom; means to cause electrons to be generated by the cathode by glow discharge; and an extraction plate (3) having at least one aperture (25) therein through which the generated electrons can, in use, be extracted.
摘要:
A method of pre-treating an ultra high vacuum charged particle gun chamber (100) by ion stimulated desorption is provided. The method includes generating a plasma (235) for providing a plasma ion source, and applying a negative potential to at least one surface (122,124,128) in the gun chamber, wherein the negative potential is adapted for extracting an ion flux from the plasma ion source to the at least one surface for desorbing contamination particles from the at least one surface by the ion flux impinging on the at least one surface.
摘要:
An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: passing at least one electron beam that is generated in a vacuum environment through at least one aperture out of an aperture array and through at least one ultra thin membrane that seals the at least one aperture; wherein the at least one electron beam is directed towards the object; wherein the at least one ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the at least one electron beam and the object.
摘要:
An electron beam device for applying a primary electron beam onto a sample, and detecting a secondary electron beam produced from a sample surface by the irradiation to evaluate the sample surface, characterized in that the cathode of an electron gun for emitting primary electron beam have a plurality of emitters disposed at intervals on one circle centered on the optical axis of a primary electron optical system and emitting a primary electron beam, and the plurality of emitters are disposed so that points projected on a line parallel to the scanning direction of the primary electron beam are arranged at equal intervals.
摘要:
Multi-beam lithography apparatus is used for writing patterns on a substrate (14) such as a wafer for ICs. The patterns may have details of various dimensions. In order to enhance the production rate, it is attractive to write fine details with a small spot 16 and large details with a large spot. It is known to vary the spot size by varying the emissive surface of the electron source. In accordance with the invention the spot size is varied by varying the size (22) of the beam limiting aperture (20), thus enabling optimization of the beam current in dependence on the spot size. A preferred embodiment is provided with an additional (condenser) lens (24) such that the object distance remains constant when the magnification of the lens system (18, 24) is varied.
摘要:
A cathode (110) with an improved work function, for use in a lithographic system, such as the SCALPEL™ system, which includes a buffer (114) between a substrate (112) and an emissive layer (116), where the buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth. The buffer layer may be a solid solution or a multiphase alloy. A method of making the cathode by depositing a buffer between a surface of the substrate and an emissive layer, where the deposited buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth.
摘要:
A substrate inspection apparatus 1-1 (Fig. 1) of the present invention performs the following steps of: carrying a substrate "S" to be inspected into an inspection chamber 23-1; maintaining a vacuum in said inspection chamber; isolating said inspection chamber from a vibration; moving successively said substrate by means of a stage 26-1 with at least one degree of freedom; irradiating an electron beam having a specified width; helping said electron beam reach to a surface of said substrate via a primary electron optical system 10-1; trapping secondary electrons emitted from said substrate via a secondary electron optical system 20-1 and guiding it to a detecting system 35-1; forming a secondary electron image in an image processing system based on a detection signal of a secondary electron beam obtained by said detecting system; detecting a defective location in said substrate based on the secondary electron image formed by said image processing system; indicating and/or storing said defective location in said substrate by CPU 37-1; and taking said completely inspected substrate out of the inspection chamber. Thereby, the defect inspection on the substrate can be performed successively with high level of accuracy and efficiency as well as with higher throughput.