摘要:
Disclosed is a method of manufacturing a capacitive micro-machined ultrasonic transducer (CMUT) device comprising a first electrode (112) on a substrate (110) and a second electrode (122) embedded in an electrically insulating membrane, the first electrode and the membrane being separated by a cavity (130) formed by the removal of a sacrificial material (116) in between the first electrode and the membrane, the method comprising forming a membrane portion (22) on the second electrode and a further membrane portion (24) extending from the membrane portion towards the substrate alongside the sacrificial material, wherein the respective thicknesses the membrane portion and the further membrane portion exceed the thickness of the sacrificial material prior to forming said cavity. A CMUT device manufactured in accordance with this method and an apparatus comprising such a CMUT device are also disclosed.
摘要:
This disclosure provides systems, methods and apparatus for providing packaged microelectromechanical systems (MEMS) devices. In one aspect, package can include a cover glass joined to a device substrate, the cover glass including integrated electrical connectivity and configured to encapsulate one or more MEMS devices on the device substrate. The cover glass can include one or more spin-on glass layers and electrically conductive routing and interconnects. The package can include a narrow seal surrounding the one or more encapsulated MEMS devices.
摘要:
An acceleration sensor and an angular velocity sensor are sealed in respective pressure atmospheres suitable therefor in the process of a series of bonding steps, thereby improving the detection sensibilities of the sensors. A movable member 111 of an acceleration sensor 11 and a vibrator 121 of an angular velocity sensor 12 are fabricated on the same sensor wafer 10 with a wall 16 interposed therebetween. A cap wafer 20 is formed in which gaps 21, 22 corresponding to the movable member 111 of the acceleration sensor 11 and the vibrator 121 of the angular velocity sensor 12 are provided. Bumps 23 are disposed near the gap 22 of the angular velocity sensor 12. The acceleration sensor 11 is sealed at atmospheric pressure. Then, the angular velocity sensor 12 is subjected to high temperature and a high-load and is vacuum-sealed. Thereafter, cutting with a diamond grindstone and mounting of circuit substrates and a wiring substrate are performed to form a combined sensor.
摘要:
The present invention relates to a method for producing a microfluidic device, comprising the following method steps: a) arranging a thermoplastic elastomeric film (1) between a base substrate (2) and a cover substrate (3), wherein at least one of the substrates (2, 3) has at least one depression (4, 5) for forming a microfluidic chamber having a depression opening (4a, 5a) on the side (2a, 3a) of the substrate (2, 3) facing the elastomeric film (1), b) applying pressing power to the arrangement such that the elastomeric film (1) is compressed between the base substrate (2) and the cover substrate (3), in which process the thickness (d 0 ) of the elastomeric film (1) is reduced, c) forming, by means of laser beam welding, at least one weld joining the thermoplastic elastomeric film (1), the base substrate (2) and the cover substrate (3), and d) removing the pressing power, in order to prevent the formation of capillaries between the base substrate (2) and the cover substrate (3).
摘要:
A dry adhesive comprising a micro-featured and nano-featured surface, and a compliant surface having a hardness of about 60 Shore A or less, the micro-featured and nano-featured surface and the compliant surface being capable of forming upon contact a dry adhesive bond with each other.
摘要:
Systems and methods for processing sacrificial layers in MEMS device fabrication are provided. In one embodiment, a method comprises: applying a patterned layer of Aerogel material onto a substrate to form an Aerogel sacrificial layer; applying at least one non-sacrificial silicon layer over the Aerogel sacrificial layer, wherein the non-sacrificial silicon layer is coupled to the substrate through one or more gaps provided in the patterned layer of Aerogel material; and removing the Aerogel sacrificial layer by exposing the Aerogel sacrificial layer to a removal liquid.